
Alessandro Margara
Politecnico di Milano

Event/Stream Processing

Batch processing

DB
Query

MapReduce
Job

Reactive applications

Financial
Analysis

Traffic
Monitoring

Fraud
Detection

System
Monitoring

Velocity!

Reactive applications

• Typical requirements
– Process large volumes of data as soon as the data

is produced …
• High throughput

– ... to timely produce new results
• Low delay

Reactive applications

• Can we use existing technologies for batch
processing?
– They are not designed to minimize latency
– We need a whole new model!

Event/stream processing

Language

Producers Consumers

Event/stream
processing

Language

• The language needs to provide suitable
abstractions to capture the key elements of
reactive, event-driven applications
– Time / temporal relations
– Seems pretty easy …
– ... I’ll try to convince you it is not

Processing

• Efficient algorithms to achieve
– High throughput
– Low delay

• Exploit parallel/distributed infrastructures

• Optimize processing and communication in
distributed environments

Outline

• Background

• Esper: hands on

• Model

BACKGROUND

Background

• Active DBs
– Early 90s

• Data Stream Management Systems (DSMSs)
– 2000s

• Complex Event Processing (CEP)
– 2000s

• Reactive Programming (RP)
– Late 90s
– Last few years

Active DB

• Traditional DB
– Human-active database-passive
– Processing is exclusively driven by queries

• Active DB
– Event Condition Action (ECA) rules
– Part of the reactive behavior moves from the application to the

DB
– Mostly DB extensions
• View maintenance
• Integrity checking

DSMS

• Data streams are (unbounded) sequences of
data elements

• Often, the most recent data is more relevant
as it describes the current state of a dynamic
system

DSMS

DBMS
• Persistent data

• One-time queries

• Read intensive

• Random access

• Access plan determined based
on the actual data

DSMS
• Transient streams

• Continuous queries

• Update intensive (append)

• Sequential access (one pass)

• Unpredictable data characteristics
and arrival patterns

DSMS (CQL)

Stream-to-Relation
(Windows)

Relation-to-Relation
(Relational Operators)

Relation-to-Stream
(New/All results)

DSMS (SQuAl)

• Stream-to-stream operators
– E.g., filter, project, map, aggregate, join, …

• Embedded windows to make operators non-blocking
• Operators combined in a dataflow graph

Event-based systems

• Software architecture in which the components
– Publish notifications of event occurrences
– Subscribe to the events they are interested in

• Ideal for dynamic environments
– Loosely coupled components
– Implicit communication
• Anonymous
• Asynchronous
• Multicast

Event-based systems

• In event-based systems the processing task consists in
matching events against subscriptions

• Different degrees of expressivity
– topic-based, content-based, …

Producers
Publishers

Consumers
Subscribers

Event-based
system

CEP

• CEP adds the ability to deploy rules that define
composite events starting from primitive ones
– E.g. if Temp(val > 10) and then Smoke within 5

min, trigger Fire

Producers
Publishers

Consumers
Subscribers

CEP

Rules

RP

• Programming abstractions to simplify the design of
reactive applications

• Focus on streams as unbounded collections of
elements
– (Functional) operators produce output streams from input

streams
– Similar to dataflow DSMSs

• Focus on programming language integration

RP

Big data + streaming = fast data

• Several systems have been proposed to perform streaming
computations on clusters
– Similar to MapReduce / Hadoop …
– ... but focusing on streaming data

• Perhaps the most well known are
– Apache Storm / Heron
• Dataflow approach
• Used within Twitter

– Apache Spark Streaming, Apache Flink
• Functional approach
• You will see it in the next lectures

Big data + streaming = fast data

Big data + streaming = fast data

Big data + streaming = fast data

• New concerns
– Query deployment in large computational

infrastructures
• Operator placement
• Operator migration

– Fault tolerance

ESPER

Esper in a nutshell

• EPL: rich language to express rules
– Grounded on the DSMS approach
• Windowing
• Relational select, join, aggregate, …
• Relation-to-stream operators to produce output
• Sub-queries

– Queries can be combined to form a graph
– Introduces some features of CEP languages
• Pattern detection

• Designed for performance
– High throughput
– Low latency

Esper in a nutshell
• Interaction with static / historical data

• Configurable push or pull communication

• Several adapters for input/output
– CSV, JMS in/out, API, DB, Socket, HTTP

• Two versions
– Esper Java
– NEsper .NET / C#

• Esper HA
– High Availability
– Ensures that the state is recoverable in the case of failure

Running example
• Count the number of fires detected using a set of smoke

and temperature sensors in the last 10 minutes

• Events
– Smoke event: String sensor, boolean state
– Temperature event: String sensor, double temperature
– Fire event: String sensor, boolean smoke, double temperature

• Condition:
– Fire: at the same sensor smoke followed by temperature>50

Processing model

• Builds on four abstractions
– Sources

• Produce data items from sensors, trace files, etc.

– Registered EPL queries
• Continuously executed against the data items produced by the

sources

– Listeners
• Receive data items from queries
• Push data items to other queries

– Subscribers
• Receive processed data tuples

Processing model

• Sources, queries, listeners, and subscribers are
connected to form a processing graph

source

EPL
query

EPL
query

listenerlistener

subscriberEPL
query

EPL
query

source

Running Example

temp

smoke

firefire

subscriber

At the same sensor
smoke = true
followed by

temperature > 50

At the same sensor
smoke = true
followed by

temperature > 50

count (*)
in 10 min
count (*)
in 10 min

Declare event types

• Two ways
– EPL create schema clause
– Runtime configuration API addEventType

• Syntax
create schema
schema_name [as]
(property_name property_type
[,property_name property_type [,...])
[inherits inherited_event_type
[, inherited_event_type] [,...]]

Running example
create schema

SmokeSensorEvent(
sensor string,
smoke boolean

);
create schema

TemperatureSensorEvent(
sensor string,
temperature double

);

create schema
FireComplexEvent(
sensor string,
smoke boolean,
temperature double

);

Event Processing Language (EPL)

• EPL is similar to SQL
– Select, where, …

• Event streams and views instead of tables
– Views define the data available for the query
– Views can represent windows over streams
– Views can also sort events, derive statistics from

event attributes, group events, …

EPL syntax

[insert into insert_into_def]
select select_list
from stream_def [as name]
[, stream_def [as name]] [,...]
[where search_conditions]
[group by grouping_expression_list]
[having grouping_search_conditions]
[output output_specification]
[order by order_by_expression_list]
[limit num_rows]

Simple examples

select *
from TemperatureSensorEvent
where temperature>50

select avg(temperature)
from TemperatureSensorEvent

Running example
insert into FireComplexEvent
select a.sensor as sensor,

a.smoke as smoke,
b.temperature as temperature

from pattern
[every a=SmokeSensorEvent(smoke=true)
->
b=TemperatureSensorEvent(
sensor=a.sensor, temperature>50)];

select count(*)
from FireComplexEvent.win:time(10 min);

Running example

http://esper-epl-tryout.appspot.com/epltryout/mainform.html

http://esper-epl-tryout.appspot.com/epltryout/mainform.html
http://esper-epl-tryout.appspot.com/epltryout/mainform.html
http://esper-epl-tryout.appspot.com/epltryout/mainform.html

Running example
SmokeSensorEvent={sensor='S1', smoke=false}

TemperatureSensorEvent={sensor='S1', temperature=30}

t=t.plus(1 seconds)

SmokeSensorEvent={sensor='S1', smoke=true}

TemperatureSensorEvent={sensor='S1', temperature=40}

t=t.plus(1 seconds)

SmokeSensorEvent={sensor='S2', smoke=false}

TemperatureSensorEvent={sensor='S1', temperature=55}

t=t.plus(11 min)

Windows
Type Syntax Description

Logical
Sliding

win:time(time_period) Sliding window that covers the
specified time interval into the
past

Logical
Tumbling

win:time_batch(time_period
[, reference point]
[, flow control])

Tumbling window that batches
events and releases them every
specified time interval, with flow
control options

Physical
Sliding

win:length(size) Sliding window that covers the
specified number of elements
into the past

Physical
Tumbling

win:length_batch(size) Tumbling window that batches
events and releases them when
a given minimum number of
events has been collected

Sliding window

Tumbling window

Physical sliding window
WhereWhere

Output control

• The output clause is optional in Esper

• It is used to
– Control the output rate
– Suppress output events

output [[all | first| last | snapshot]
every output_rate [seconds | events]]

Output control

• Control advancement of sliding windows

select avg(temperature)
from TemperatureSensorEvent.win:time(4 sec)
output snapshot every 2 sec

select avg(temperature)
from TemperatureSensorEvent.win:length(4)
output snapshot every 2 events

Pattern matching

• An event pattern emits when one or more
event occurrences match the pattern
definition

• Patterns can include temporal operators

• Pattern matching is implemented using state
machines

Pattern matching

• Content-based event selection
TemperatureEventStream(sensor="S0",
temperature>50)

• Time-based event observers specify time
intervals or time schedules
timer:interval(10 seconds)
timer:at(5, *, *, *, *)

Every 5 minutes
Syntax: minutes, hours, days of month, months, days of week

Fires after 10 seconds

Pattern matching operators

• Logical operators
– and, or, not

• Temporal operators that operate on event order
– -> (followed-by)

• Creation/termination control
– every, every-distinct, [num] and until

• Guards filter out events and cause termination
– timer:within, timer:withinmax and while-expression

Pattern matching

select a.sensor from pattern
[every (

a = SmokeSensorEvent(smoke=true)
->
TemperatureSensorEvent(

temperature>50,
sensor=a.sensor)

where timer:within(2 sec)
)]

Pattern matching

• every expr
– When expr evaluates to true or false …
– … the pattern matching for expr should re-start

• Without the every operator the pattern
matching process does not re-start

Pattern matching

• This pattern fires when encountering an A
event and then stops
A

• This pattern keeps firing when encountering A
events, and does not stop
every A

Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4

every (A -> B) Detect an event A followed by an event B.
At the time when B occurs, the pattern
matches and restarts looking for the next A
event

B1 {A1, B1}

B3 {A2, B3}

B4 {A4, B4}

Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4

every A -> B The pattern fires for every A followed by a B
event

B1 {A1, B1}

B3 {A2, B3}, {A3, B3}

B4 {A4, B4}

Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4

A -> every B The pattern fires for an A event followed by
every B event

B1 {A1, B1}

B2 {A1, B2}

B3 {A1, B3}

B4 {A1, B4}

Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4

every A -> every B The pattern fires for every A event followed
by every B event

B1 {A1, B1}

B2 {A1, B2}

B3 {A1, B3}, {A2, B3}, {A3, B3}

B4 {A1, B4}, {A2, B4}, {A3, B4}, {A4, B4}

Pattern matching

• With the every operator
– Multiple (partial) instances of the same pattern can be active at the

same time
– Each instance can consume some resources when events enter the

engine

• End pending instances whenever possible
– With the timer:within construct
– With the and not construct

• Note: the data windows on a pattern do not always limit pattern
sub-expression lifetime

Pattern matching

Pattern Results

every A -> B {A1, B1}, {A2, B1}

every A -> (B and not A) {A2, B1}

A1A2B1

The and not operator causes the sub-expression
looking for {A1, B?} to end when A2 arrives

Pattern matching

Pattern Results

every A -> B {A1, B1}, {A2, B1}

every A -> (B where timer:within(2 sec)) {A2, B1}

A1@1 A2@3 B1@4

The timer:within operator causes the sub-expression
looking for {A1, B?} to end after 2 seconds

Combine queries

• The insert into clause forwards events to other
streams for further downstream processing

insert into FireComplexEvent
select a.sensor as sensor,

a.smoke as smoke,
b.temperature as temperature

from pattern
[every a=SmokeSensorEvent(smoke=true)
->
b=TemperatureSensorEvent(
sensor=a.sensor, temperature>50)];

select count(*)
from FireComplexEvent.win:time(10 min);

Exercise

• Application scenario: taxi trips in NYC

• Two types of events
Pickup(int taxi_id, int location_id)
Dropoff(int taxi_id, int location_id, int amount)

• Definitions
– Route = pair of (pickup location, dropoff location)

Exercise

• Exercise: find the 10 most profitable routes in
the last 30 minutes
– The profitability of a route is the sum of the

amounts of all the taxi trips for that route
– Consider routes that ended within the last 30

minutes

Solutions

Assume a stock tick event
StockTick(String name, int price)

with the fields name and price representing the name
of an company and the associated price for a stock tick.

• Write a query which computes the average prices
over the last 30 seconds

select avg(price)
from StockTickEvent.win:time(30 sec)

Solutions

Assume a stock tick event
StockTick(String name, int price)

with the fields name and price representing the name of
an company and the associated price for a stock tick.

• Write a query which alerts on each "IBM" stock tick with
a price greater then 80 and within the next 60 seconds

every StockTickEvent(name="IBM",price>80)
where timer:within(60 seconds)

Solutions

Assume a stock tick event
StockTick(String name, int price)

with the fields name and price representing the name of an
company and the associated price for a stock tick.

• Write a query that returns the average price per name for
the last 100 stock ticks

select name, avg(price) as averagePrice
from StockTickEvent.win:length(100)
group by name

Solutions
• Taxi routes exercise: find the 10 most profitable routes in the last 30 minutes

insert into Route
select
pu.pickupLocation as pickupLocation,
do.dropoffLocation as dropoffLocation,
do.amount as amount
from pattern
[every pu=Pickup ->
 (do=Dropoff(taxiId = pu.taxiId)
 where timer:within(30 min))]

select pickupLocation, dropoffLocation, sum(amount) as sum
from Route
group by pickupLocation, dropoffLocation
output all every 1 events
order by sum desc
limit 10

MODEL

Why a model?

• As discussed in the background
– Different communities
– Different vocabularies
– Different goals
– Different approaches
– Different assumptions

Why a model?

• To better understand existing systems

• To classify existing systems

• To help comparing existing systems

• To understand the strengths and the weaknesses of each
approach

• To identify solved problems and open issues

Vocabulary

• To avoid biases, we introduce a precise
terminology

Rules

Producers/
Sources

Consumers/
Sinks

IFP
Engine

Information
flows

Information
flows

The IFP domain

• The IFP engine processes incoming flows of information according to a
set of processing rules

• The sources produce the input information flows

• The sinks consume the results of processing

• The rule managers add or remove rules

• Information flows are composed of information items
– Items part of the same flow are not necessarily ordered nor of the same kind
– Items part of the same flow are not necessarily of the same kind

Modeling framework

• Different models to capture different viewpoints
– Functional model
– Processing model
– Deployment model
– Interaction model
– Time model
– Data model
– Rule model
– Language model

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Implements the transport protocol to
move information items along the net

• Acts as a demultiplexer

• Implements the transport protocol to
move information items along the net

• Acts as a demultiplexer

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Implements the transport protocol to
move information items along the net

• Acts as a multiplexer

• Implements the transport protocol to
move information items along the net

• Acts as a multiplexer

Functional model: assumptions

• We assume rules can be (logically) decomposed in two parts: C → A
– C is the condition
– A is the action

• Example (in CQL):
Select IStream(Count(*))
From F1 [Range 1 Minute]
Where F1.A > 0

• Accordingly, we split the processing task in two phases
– The detection phase determines the items that trigger the rule
– The production phase use those items to produce the output of the rule

condition

action

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Implements the detection phase

• Accumulates partial results into the history

• When a rule fires, the decider passes to the producer
its action part and the triggering items

• Implements the detection phase

• Accumulates partial results into the history

• When a rule fires, the decider passes to the producer
its action part and the triggering items

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Implements the production phase

• Uses the items in Seq as stated in action A

• Implements the production phase

• Uses the items in Seq as stated in action A

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Some systems allow rules to be added or
removed at processing time

• Some systems allow rules to be added or
removed at processing time

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• If present, it models the ability to
perform recursive processing, thus
building hierarchies of items

• If present, it models the ability to
perform recursive processing, thus
building hierarchies of items

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Some systems allows rules to combine
flowing items with static items stored
into a (read only) storage

• Some systems allows rules to combine
flowing items with static items stored
into a (read only) storage

Functional model

Receiver Forwarder

Clock

Decider

HistoryHistory
HistoryHistory

HistoryHistory Producer

AAAA
AA

Seq

Rules

Knowledge
base

• Optional component

• Periodically creates special information items
holding current time

• Its presence models the ability of performing
periodic processing of inputs

• Optional component

• Periodically creates special information items
holding current time

• Its presence models the ability of performing
periodic processing of inputs

Detection-production cycle

• Every new item I entering the engine causes a
new detection-production cycle

• If present, the Clock can also generate new items,
causing a new cycle

• Each cycle is composed of two phases
– Detection phase
– Production phase

Detection phase

• Evaluates all the rules to find those enabled

• Uses the incoming item I, plus the History, plus the data
into the Knowledge base, if present

• The item I can be accumulated into the History for
partially enabled rules

• The action part of the enabled rules together with the
triggering items (A+Seq) is passed to the producer

Production phase

• Produces the output items

• Combining the items that triggered the rule with data present in the
Knowledge base, if present

• New items are sent to subscribed sinks (through the Forwarder)…

• …but they could also be sent internally to be processed again
(recursive processing)

• In some systems the action part of fired rules may also change the set
of deployed rules

Functional model

• Maximum length of Seq a key aspect
– Bounded: only detection of patterns of fixed

length
• No recursion
• No time windows

– Max = 1: decision based only on the current
incoming item
• Stateless operators (filter, project, map, …)
• Matching in event-based systems

Functional model

• Presence of the Clock models the ability to
process rules periodically
– Available in most “streaming” systems
• DSMS, RP

– Not available in many event-based systems
• CEP

Functional model

• The Knowledge base manages the interaction
with static data
– Available in most DSMS and RP systems
– Not always available in CEP systems

Functional model

• The presence of a loop from the Producer
back to the Receiver models the ability to
perform recursive processing
– Present in several CEP systems
– DSMS and RP systems sometimes achieve the

same expressivity through
• Nested rules
• Circular data-flow graph

Functional model

• Support to dynamic rule changes
– Few systems support it
– In some cases it can be implemented externally…
– … through sinks acting also as rule managers

The semantics of processing

• What determines the output of each
detection-production cycle?
– The new item entering the engine
– The set of deployed rules
– The items stored into the History
– The content of the Knowledge Base

• Is this enough?

Processing model

• Three policies affect the behavior of the
system
– The selection policy
– The consumption policy
– The load shedding policy

Selection policy

• Determines whether a rule fires once or
multiple times
– Also determines which items are selected from

the History

Receiver

Decider

A
AAA AA A

B ?

A BA B

A0 A1
A0 A1

A0 BA0 BRR

A1 BA1 BRR

A0 BA0 BRR A1 BA1 BRRsingle

multiple

or

Selection policy

• Most systems adopt a multiple selection policy

• Is it adequate? Not always …
– Example rule: Alert fire when smoke and high temperature are detected

in a short time frame
– 10 sensors read high temperature
– Immediately after one sensor detects smoke
– One would like to receive a single alert, not 10

• A few systems allow this policy to be programmed…
– … some of them on a per-rule base
• E.g., Esper’s every operator

Selection policy: the TESLA case

• TESLA (language of the T-Rex CEP system) provides a customizable
selection policy on a per rule base

– Example: Multiple selection
define Fire(area: string, measuredTemp: double)
from Smoke(area=$a) and
 each Temp(area=$a and val>50) within 1min. from Smoke
where area=Smoke.area and measuredTemp=Temp.value

– Example: Single selection
define Fire(area: string, measuredTemp: double)
from Smoke(area=$a) and
 last Temp(area=$a and val>50) within 1min. from Smoke
where area=Smoke.area and measuredTemp=Temp.val

• TESLA also offers:

• first … within

• n-first … within n-last … within

• TESLA also offers:

• first … within

• n-first … within n-last … within

Consumption policy

• Determines how the history changes after
firing of a rule / what happens when new
items enter the Decider

Receiver

Decider

A
AA

B
?

ABAB

A BA BRR

selected

zero
A BA BRR

Consumption policy: considerations

• Most systems couple a multiple selection policy with a
zero consumption policy
– This is the common case with DSMSs, which use (sliding)

windows to select relevant events

Select IStream(Smoke.area)
From Smoke[Range 1 min], Temp[Range 1 min]
Where Smoke.area = Temp.area AND Temp.val > 50

• The systems that offer a programmable selection policy,
often offer a programmable consumption policy, too

Consumption policy: The TESLA case

• Zero consumption policy
define Fire(area: string, measuredTemp: double)
from Smoke(area=$a) and
 each Temp(area=$a and val>50)
 within 1min. from Smoke
where area=Smoke.area and measuredTemp=Temp.value

• Selected consumption policy
define Fire(area: string, measuredTemp: double)
from Smoke(area=$a) and
 each Temp(area=$a and val>50)
 within 1min. from Smoke
where area=Smoke.area and measuredTemp=Temp.value
consuming Temp

T T T T S

Fire!Fire!Fire!Fire!

S

Fire!Fire!Fire!Fire!

T T T T S

Fire!Fire!Fire!Fire!

T T T T S

Load shedding policy

• Defines how to manage bursts of input data

• Accumulate pending items in the Receiver
– Side effect: the delay increases

• Discard some items
– Side effect: the results might be incomplete

Load shedding policy

• It may seem a system issue …
– To be solved by the Receiver

• … but it strongly impacts the results produced
– The semantics of the rules

• Some systems enable rule managers to specify load
shedding policies on a per-rule basis
– For instance, the Aurora DSMS allows rules to specify QoS

requirements and sheds input to stay within the specified
limits with the available resource

Deployment model

• IFP applications may include a
large number of sources and
sinks
– Possibly dispersed over a wide

geographical area

• It becomes important to
consider the deployment
architecture of the engine
– How the components of the

functional model can be
distributed to achieve scalability

Deployment model

Distributed

NetworkedCentralized

Rules
Sources Sinks

IFP Engine

Clustered

Deployment model

Clustered

• Processing nodes are
geographically co-located

• Large bandwidth

• Limited communication delay

• Potentially adopting shared
memory model

Networked

• Processing nodes are
geographically distributed

• Bandwidth can be a
bottleneck

• Communication delay can be
relatively high

• No shared memory

Deployment model

• Many systems adopt a centralized solution

• Some systems have been explicitly designed for
cluster deployments

• Only few systems target networked deployments
– In most cases, deployment/configuration is not

automatic

Distribution: why?

• More processing power to reduce processing
latency
– Current algorithms already very efficient but …
– … certain computations may still introduce bottlenecks
• Complex aggregations
• Large volumes of streaming data
• Large volumes of background data

• Independent operations can be carried out in
parallel on multiple machines

Distribution: why?

• Scalability in the number of rules
– Different rules on different machines

• Scalability in the number of sources and sinks
– Input and output connections
– One machine can (efficiently) support only a

limited number of open connections

Distribution: why?

• The application scenario is intrinsically
distributed
– Distributed sources, sinks, background knowledge
– Network can become the bottleneck
• Bandwidth
• Delay

– Need to consider how to route and where to
process your information
• E.g., high frequency traders locate their machine close to

the sources

Distribution: why?

• Resource-constrained nodes
– Sensors
– Mobile devices

• Offload (only part of) the computation!
– Perform part of the computation in the mobile

source to reduce network communication
(battery!)

Deployment model

• Automatic distribution of processing
introduces the operator placement
problem

• Given a set of rules (composed of
operators) and a set of nodes
– How to split the processing load
– How to assign operators to available

nodes

• In other words
– Given a processing network
– How to map it onto the physical

network of nodes

Operator placement

• The operator placement problem is still open
– Several proposals
– Different goals
– Difficult to compare solutions and results
• Even in its simplest form the problem is NP-hard

Operator placement: goals

• Load
– Aggregate CPU usage of all the operators deployed

in each node
– Different variants
• Minimize average load
• Minimize maximum load (avoid/limit bottlenecks)
• Minimize load variance (avoid/limit bursts)

Operator placement: goals

• Latency and load
– Initial placement
• Based on network cost (latency)

– Load-balancing strategy
• To adapt to changes in data and resource conditions

Operator placement: goals

• Latency and bandwidth
– Minimize network usage u = ∑ DR(L)*Lat(L)
• DR(L) data rate over link L
• Lat(L) latency (cost) of link L

– Tolerate paths with additional latency …
– … if they reduce the overall stream bandwidth

Operator placement

• Optimizations: operator reuse

Operator placement

• Optimizations: operator replication

Interaction model

• Models the interactions between components
in an IFP systems
– Who starts the communication?

Sources SinksIFP Engine

Interaction model
Sources SinksIFP Engine

• Push
• Pull

Observation Model
• Push
• Pull

Forwarding Model
• Push
• Pull

Notification Model

Time model

• Relationship between information items and passing of time

• Ability of an IFP system to associate some kind of ordering
relationship to information items

• We identified 4 classes:
1. Stream-only
2. Causal
3. Absolute
4. Interval

Stream-only time model
• Used in DSMS / RP

• Timestamps may be present or not

• When present, they are used only to
order items before entering the engine,
then they are forgotten

• They are not exposed to the language
– With the exception of windows

• Ordering in output streams is
conceptually separate from the ordering
in input streams

CQL/Stream
Select DStream(*)
From F1[Rows 5],

F2[Range 1 Minute]
Where F1.A = F2.A

Causal time model
• Each item has a label

reflecting some kind of
causal relationship

• Partial order

Gigascope
Select count(*)
From A, B
Where A.a-1 <= B.b and

A.a+1 > B.b
A.a, B.b
monotonically increase

A

B
C

Absolute time model

• Information items have an associated timestamp

• Defining a single point in time w.r.t. a (logically) unique clock
– Total order

• Timestamps are fully exposed to the language

• Information items can be timestamped at source or entering the engine

TESLA/T-Rex
Define Fire(area: string, measuredTemp: double)
From Smoke(area=$a) and last

Temp(area=$a and value>45) within 5 min. from Smoke
Where area=Smoke.area and measuredTemp=Temp.value

Interval time model

• Used for events to include “duration”

• At a first sight, it is a simple extension of the absolute
time model
– Timestamps with two values:
– Start time and end time

• However, it opens many issues
– What is the successor of an event?
– What is the timestamp associated to a composite event?

Interval time model
• Which is the immediate successor

of A?
– Choose according to end time only: B

• But it started before A!

– Exclude B: C, D
• Both of them?
• Which of them?

– No other event strictly between A
and its successor: C, D, E
• Seems a natural definition
• Unfortunately we loose associativity!

– X(YZ) ≠ (X Y)Z

• May prevent rule rewriting for
processing optimizations

Interval time model

• What is “next” in event processing? by White et. Al
– Proposes a number of desired properties to be satisfied by the “Next”

function

• There is one model that satisfies them all
– Complete History

• It is not sufficient to encode timestamps using a couple of values
– Timestamps of composite events must embed the timestamps of all the

events that led to their occurrence
– Possibly, timestamps of unbounded size
• In case of unbounded Seq

Data model
• Studies how the different

systems
– Represent single data items
– Organize them into data

flows

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous

Nature of items
• The meaning we associate to

information items
– Generic data
– Event notifications

• Deeply influences several
other aspects of an IFP system
– Time model !!!
– Rule language
– Semantics of processing

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous

Format of items
• How information is

represented

• Influences the way items are
processed
– In DSMS, the relational model

requires tuples
– In RP, streams are often typed

to enable integration with the
programming language type
system

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous

Support for uncertainty

• Ability to associate a degree of
uncertainty to information items

• To the content of items
– Imprecise temperature reading

• To the presence of an item
(occurrence of an event)
– Spurious RFID reading

• When present, probabilistic
information is usually exploited in
rules during processing

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous

Data flows

• Homogeneous
– Each flow contains data with the

same format and “type”
– E.g. Tuples with identical structure

• Heterogeneous
– Information flows are seen as

channels connecting sources,
processors, and sinks

– Each channel may transport items
with different kind and format

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous

Rule model

• Rules are much more complex
entities than data items
– Large number of different

approaches
– Already observed in the previous

slides

• We classify them into two
macro classes
– Transforming rules
– Detecting rules

Rule

• Transforming Rules
• Detecting Rules

Type of Rules

Support for Uncertainty

Support for uncertainty
• Two orthogonal aspects

• Support for uncertain input
– Allows rules to deal

with/reason about uncertain
input data

• Support for uncertain output
– Allows rules to associate a

degree of uncertainty to the
output produced

Rule

• Transforming Rules
• Detecting Rules

Type of Rules

Support for Uncertainty

Language model

• Following the rule model, we define two
classes of languages:
– Transforming languages
• Declarative languages
• Dataflow languages

– Functional and/or imperative operators

– Detecting languages
• Pattern-based

Declarative languages

• Specify operations to transform input flows to
produce one or more output flows

• Two main flavors
– Relational (DSMS)
• Select, join, aggregate operators
• Windowing operators to select portions of the stream

– Functional (RP)
• Map, reduce, filter
• Rare use of windowing operators

Dataflow languages

• Specify the desired execution flow
– Starting from primitive operators
– Example: Oracle CEP, Storm

• Can be user-defined

• Usually adopt a graphical notation

Imperative languages
Oracle CEP

Declarative languages

• Specify a firing condition as a pattern

• Select a portion of incoming flows through
– Logic operators
– Content / timing constraints

• The action uses selected items to produce
new knowledge

Detecting Languages

TESLA / T-Rex

Define Fire(area: string, measuredTemp: double)
From Smoke(area=$a) and last

 Temp(area=$a and value>45)
 within 5 min. from Smoke

Where area=Smoke.area and
 measuredTemp=Temp.value

ACTION

CONDITION (PATTERN)

	Event/Stream Processing
	Batch processing
	Reactive applications
	Reactive applications
	Reactive applications
	Event/stream processing
	Language
	Processing
	Outline
	Background
	Background
	Active DB
	DSMS
	DSMS
	DSMS (CQL)
	DSMS (SQuAl)
	Event-based systems
	Event-based systems
	CEP
	RP
	RP
	Big data + streaming = fast data
	Big data + streaming = fast data
	Big data + streaming = fast data
	Big data + streaming = fast data
	Esper
	Esper in a nutshell
	Esper in a nutshell
	Running example
	Processing model
	Processing model
	Running Example
	Declare event types
	Running example
	Event Processing Language (EPL)
	EPL syntax
	Simple examples
	Running example
	Running example
	Running example
	Windows
	Sliding window
	Tumbling window
	Physical sliding window
	Output control
	Output control
	Pattern matching
	Pattern matching
	Pattern matching operators
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Pattern matching
	Combine queries
	Exercise
	Exercise
	Solutions
	Solutions
	Solutions
	Solutions
	Model
	Why a model?
	Why a model?
	Vocabulary
	The IFP domain
	Modeling framework
	Functional model
	Functional model
	Functional model
	Functional model: assumptions
	Functional model
	Functional model
	Functional model
	Functional model
	Functional model
	Functional model
	Functional model
	Detection-production cycle
	Detection phase
	Production phase
	Functional model
	Functional model
	Functional model
	Functional model
	Functional model
	The semantics of processing
	Processing model
	Selection policy
	Selection policy
	Selection policy: the TESLA case
	Consumption policy
	Consumption policy: considerations
	Consumption policy: The TESLA case
	Load shedding policy
	Load shedding policy
	Deployment model
	Deployment model
	Deployment model
	Deployment model
	Distribution: why?
	Distribution: why?
	Distribution: why?
	Distribution: why?
	Deployment model
	Operator placement
	Operator placement: goals
	Operator placement: goals
	Operator placement: goals
	Operator placement
	Operator placement
	Interaction model
	Interaction model
	Time model
	Stream-only time model
	Causal time model
	Absolute time model
	Interval time model
	Interval time model
	Interval time model
	Data model
	Nature of items
	Format of items
	Support for uncertainty
	Data flows
	Rule model
	Support for uncertainty
	Language model
	Declarative languages
	Dataflow languages
	Imperative languages
	Declarative languages
	Detecting Languages

