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Reactive applications

• Typical requirements
– Process large volumes of data as soon as the data 

is produced …
• High throughput

– ... to timely produce new results
• Low delay



Reactive applications

• Can we use existing technologies for batch 
processing?
– They are not designed to minimize latency
– We need a whole new model!



Event/stream processing 

Language

Producers Consumers

Event/stream
processing



Language

• The language needs to provide suitable 
abstractions to capture the key elements of 
reactive, event-driven applications
– Time / temporal relations
– Seems pretty easy …
– ... I’ll try to convince you it is not 



Processing

• Efficient algorithms to achieve
– High throughput
– Low delay

• Exploit parallel/distributed infrastructures

• Optimize processing and communication in 
distributed environments



Outline

• Background

• Esper: hands on

• Model



BACKGROUND



Background

• Active DBs
– Early 90s

• Data Stream Management Systems (DSMSs)
– 2000s

• Complex Event Processing (CEP)
– 2000s

• Reactive Programming (RP)
– Late 90s
– Last few years



Active DB

• Traditional DB
– Human-active database-passive
– Processing is exclusively driven by queries

• Active DB
– Event Condition Action (ECA) rules
– Part of the reactive behavior moves from the application to the 

DB
– Mostly DB extensions
• View maintenance
• Integrity checking



DSMS

• Data streams are (unbounded) sequences of 
data elements

• Often, the most recent data is more relevant 
as it describes the current state of a dynamic 
system



DSMS

DBMS
• Persistent data

• One-time queries

• Read intensive

• Random access

• Access plan determined based 
on the actual data

DSMS
• Transient streams

• Continuous queries

• Update intensive (append)

• Sequential access (one pass)

• Unpredictable data characteristics 
and arrival patterns



DSMS (CQL)

Stream-to-Relation
(Windows)

Relation-to-Relation
(Relational Operators)

Relation-to-Stream
(New/All results)



DSMS (SQuAl)

• Stream-to-stream operators
– E.g., filter, project, map, aggregate, join, …

• Embedded windows to make operators non-blocking
• Operators combined in a dataflow graph



Event-based systems

• Software architecture in which the components
– Publish notifications of event occurrences
– Subscribe to the events they are interested in

• Ideal for dynamic environments
– Loosely coupled components
– Implicit communication
• Anonymous
• Asynchronous
• Multicast



Event-based systems

• In event-based systems the processing task consists in 
matching events against subscriptions

• Different degrees of expressivity
– topic-based, content-based, …

Producers
Publishers

Consumers
Subscribers

Event-based
system



CEP

• CEP adds the ability to deploy rules that define 
composite events starting from primitive ones
– E.g. if Temp(val > 10) and then Smoke within 5 

min, trigger Fire

Producers
Publishers

Consumers
Subscribers

CEP

Rules



RP

• Programming abstractions to simplify the design of 
reactive applications

• Focus on streams as unbounded collections of 
elements
– (Functional) operators produce output streams from input 

streams
– Similar to dataflow DSMSs

• Focus on programming language integration



RP



Big data + streaming  = fast data

• Several systems have been proposed to perform streaming 
computations on clusters
– Similar to MapReduce / Hadoop …
– ... but focusing on streaming data

• Perhaps the most well known are
– Apache Storm / Heron
• Dataflow approach
• Used within Twitter

– Apache Spark Streaming, Apache Flink
• Functional approach
• You will see it in the next lectures



Big data + streaming  = fast data



Big data + streaming  = fast data



Big data + streaming  = fast data

• New concerns
– Query deployment in large computational 

infrastructures
• Operator placement
• Operator migration

– Fault tolerance



ESPER



Esper in a nutshell

• EPL: rich language to express rules
– Grounded on the DSMS approach
• Windowing
• Relational select, join, aggregate, …
• Relation-to-stream operators to produce output
• Sub-queries

– Queries can be combined to form a graph
– Introduces some features of CEP languages
• Pattern detection

• Designed for performance
– High throughput
– Low latency



Esper in a nutshell
• Interaction with static / historical data

• Configurable push or pull communication

• Several adapters for input/output
– CSV, JMS in/out, API, DB, Socket, HTTP

• Two versions
– Esper  Java
– NEsper  .NET / C#

• Esper HA
– High Availability
– Ensures that the state is recoverable in the case of failure



Running example
• Count the number of fires detected using a set of smoke 

and temperature sensors in the last 10 minutes

• Events
– Smoke event: String sensor, boolean state
– Temperature event: String sensor, double temperature
– Fire event: String sensor, boolean smoke, double temperature

• Condition:
– Fire: at the same sensor smoke followed by temperature>50 



Processing model

• Builds on four abstractions
– Sources

• Produce data items from sensors, trace files, etc.

– Registered EPL queries
• Continuously executed against the data items produced by the 

sources

– Listeners
• Receive data items from queries
• Push data items to other queries

– Subscribers
• Receive processed data tuples



Processing model

• Sources, queries, listeners, and subscribers are 
connected to form a processing graph

source

EPL
query

EPL
query

listenerlistener

subscriberEPL
query

EPL
query

source



Running Example

temp

smoke

firefire

subscriber

At the same sensor
smoke = true
followed by

temperature > 50

At the same sensor
smoke = true
followed by

temperature > 50

count (*) 
in 10 min
count (*) 
in 10 min



Declare event types

• Two ways
– EPL create schema clause
– Runtime configuration API addEventType 

• Syntax
create schema
schema_name [as]
(property_name property_type
[,property_name property_type [,...])
[inherits inherited_event_type
[, inherited_event_type] [,...]]



Running example
create schema

SmokeSensorEvent(
sensor string, 
smoke boolean

);
create schema

TemperatureSensorEvent(
sensor string, 
temperature double

);

create schema
FireComplexEvent(
sensor string,
smoke boolean,
temperature double

);



Event Processing Language (EPL)

• EPL is similar to SQL
– Select, where, …

• Event streams and views instead of tables
– Views define the data available for the query
– Views can represent windows over streams
– Views can also sort events, derive statistics from 

event attributes, group events, …



EPL syntax

[insert into insert_into_def]
select select_list
from stream_def [as name]
[, stream_def [as name]] [,...] 
[where search_conditions]
[group by grouping_expression_list]
[having grouping_search_conditions]
[output output_specification]
[order by order_by_expression_list]
[limit num_rows]



Simple examples

select * 
from TemperatureSensorEvent
where temperature>50

select avg(temperature) 
from TemperatureSensorEvent



Running example
insert into FireComplexEvent
select a.sensor as sensor,

a.smoke as smoke,
b.temperature as temperature

from pattern
[every a=SmokeSensorEvent(smoke=true)
->
b=TemperatureSensorEvent(
sensor=a.sensor, temperature>50)];

select count(*)
from FireComplexEvent.win:time(10 min);



Running example

http://esper-epl-tryout.appspot.com/epltryout/mainform.html 

http://esper-epl-tryout.appspot.com/epltryout/mainform.html
http://esper-epl-tryout.appspot.com/epltryout/mainform.html
http://esper-epl-tryout.appspot.com/epltryout/mainform.html


Running example
SmokeSensorEvent={sensor='S1', smoke=false}

TemperatureSensorEvent={sensor='S1', temperature=30}

t=t.plus(1 seconds)

SmokeSensorEvent={sensor='S1', smoke=true}

TemperatureSensorEvent={sensor='S1', temperature=40}

t=t.plus(1 seconds)

SmokeSensorEvent={sensor='S2', smoke=false}

TemperatureSensorEvent={sensor='S1', temperature=55}

t=t.plus(11 min)



Windows
Type Syntax Description

Logical
Sliding

win:time(time_period) Sliding window that covers the 
specified time interval into the 
past

Logical
Tumbling

win:time_batch(time_period
[, reference point]
[, flow control]) 

Tumbling window that batches 
events and releases them every 
specified time interval, with flow 
control options

Physical
Sliding

win:length(size) Sliding window that covers the 
specified number of elements 
into the past

Physical
Tumbling

win:length_batch(size) Tumbling window that batches 
events and releases them when 
a given minimum number of 
events has been collected



Sliding window



Tumbling window



Physical sliding window
WhereWhere



Output control

• The output clause is optional in Esper 

• It is used to
– Control the output rate
– Suppress output events 

output [[all | first| last | snapshot]
every output_rate [seconds | events]]



Output control

• Control advancement of sliding windows

select avg(temperature) 
from TemperatureSensorEvent.win:time(4 sec)
output snapshot every 2 sec

select avg(temperature)
from TemperatureSensorEvent.win:length(4)
output snapshot every 2 events



Pattern matching

• An event pattern emits when one or more 
event occurrences match the pattern 
definition

• Patterns can include temporal operators

• Pattern matching is implemented using state 
machines



Pattern matching

• Content-based event selection
TemperatureEventStream(sensor="S0", 
temperature>50)

• Time-based event observers specify time 
intervals or time schedules
timer:interval(10 seconds) 
timer:at(5, *, *, *, *)  

Every 5 minutes
Syntax: minutes, hours, days of month, months, days of week 

Fires after 10 seconds 



Pattern matching operators

• Logical operators
– and, or, not

• Temporal operators that operate on event order
– -> (followed-by)

• Creation/termination control
– every, every-distinct, [num] and until 

• Guards filter out events and cause termination
– timer:within, timer:withinmax and while-expression



Pattern matching

select a.sensor from pattern 
[every ( 

a = SmokeSensorEvent(smoke=true)
-> 
TemperatureSensorEvent(

temperature>50,
sensor=a.sensor) 

where timer:within(2 sec) 
)]



Pattern matching

• every expr
– When expr evaluates to true or false …
– … the pattern matching for expr should re-start

• Without the every operator the pattern 
matching process does not re-start



Pattern matching

• This pattern fires when encountering an A 
event and then stops
A

• This pattern keeps firing when encountering A 
events, and does not stop
every A



Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4 

every (A -> B) Detect an event A followed by an event B.
At the time when B occurs, the pattern 
matches and restarts looking for the next A 
event

B1 {A1, B1}

B3 {A2, B3}

B4 {A4, B4}



Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4 

every A -> B The pattern fires for every A followed by a B 
event

B1 {A1, B1}

B3 {A2, B3}, {A3, B3}

B4 {A4, B4}



Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4 

A -> every B The pattern fires for an A event followed by 
every B event

B1 {A1, B1}

B2 {A1, B2}

B3 {A1, B3}

B4 {A1, B4}



Pattern matching
A1 B1 B2 A2 A3 B3 A4 B4 

every A -> every B The pattern fires for every A event followed 
by every B event

B1 {A1, B1}

B2 {A1, B2}

B3 {A1, B3}, {A2, B3}, {A3, B3}

B4 {A1, B4}, {A2, B4}, {A3, B4}, {A4, B4}



Pattern matching

• With the every operator
– Multiple (partial) instances of the same pattern can be active at the 

same time
– Each instance can consume some resources when events enter the 

engine

• End pending instances whenever possible
– With the timer:within construct
– With the and not construct

• Note: the data windows on a pattern do not always limit pattern 
sub-expression lifetime



Pattern matching

Pattern Results

every A -> B {A1, B1}, {A2, B1}

every A -> (B and not A) {A2, B1}

A1A2B1

The and not operator causes the sub-expression 
looking for {A1, B?} to end when A2 arrives



Pattern matching

Pattern Results

every A -> B {A1, B1}, {A2, B1}

every A -> (B where timer:within(2 sec)) {A2, B1}

A1@1 A2@3 B1@4

The timer:within operator causes the sub-expression 
looking for {A1, B?} to end after 2 seconds



Combine queries

• The insert into clause forwards events to other 
streams for further downstream processing

insert into FireComplexEvent
select a.sensor as sensor,

a.smoke as smoke,
b.temperature as temperature

from pattern
[every a=SmokeSensorEvent(smoke=true)
->
b=TemperatureSensorEvent(
sensor=a.sensor, temperature>50)];

select count(*)
from FireComplexEvent.win:time(10 min);



Exercise

• Application scenario: taxi trips in NYC

• Two types of events
Pickup(int taxi_id, int location_id)
Dropoff(int taxi_id, int location_id, int amount)

• Definitions
– Route = pair of (pickup location, dropoff location)



Exercise

• Exercise: find the 10 most profitable routes in 
the last 30 minutes
– The profitability of a route is the sum of the 

amounts of all the taxi trips for that route
– Consider routes that ended within the last 30 

minutes



Solutions

Assume a stock tick event
StockTick(String name, int price)

with the fields name and price representing the name 
of an company and the associated price for a stock tick. 

• Write a query which computes the average prices 
over the last 30 seconds

select avg(price)
from StockTickEvent.win:time(30 sec) 



Solutions

Assume a stock tick event
StockTick(String name, int price)

with the fields name and price representing the name of 
an company and the associated price for a stock tick. 

• Write a query which alerts on each "IBM" stock tick with 
a price greater then 80 and within the next 60 seconds

every StockTickEvent(name="IBM",price>80)
where timer:within(60 seconds)



Solutions

Assume a stock tick event
StockTick(String name, int price)

with the fields name and price representing the name of an 
company and the associated price for a stock tick. 

• Write a query that returns the average price per name for 
the last 100 stock ticks

select name, avg(price) as averagePrice
from StockTickEvent.win:length(100)
group by name



Solutions
• Taxi routes exercise: find the 10 most profitable routes in the last 30 minutes

insert into Route
select
pu.pickupLocation as pickupLocation,
do.dropoffLocation as dropoffLocation,
do.amount as amount
from pattern
[every pu=Pickup ->
 (do=Dropoff(taxiId = pu.taxiId)
 where timer:within(30 min))]

select pickupLocation, dropoffLocation, sum(amount) as sum
from Route
group by pickupLocation, dropoffLocation
output all every 1 events
order by sum desc
limit 10



MODEL



Why a model?

• As discussed in the background
– Different communities
– Different vocabularies
– Different goals
– Different approaches
– Different assumptions



Why a model?

• To better understand existing systems

• To classify existing systems

• To help comparing existing systems

• To understand the strengths and the weaknesses of each 
approach

• To identify solved problems and open issues



Vocabulary

• To avoid biases, we introduce a precise 
terminology

Rules

Producers/
Sources

Consumers/
Sinks

IFP
Engine

Information
flows

Information
flows



The IFP domain

• The IFP engine processes incoming flows of information according to a 
set of processing rules

• The sources produce the input information flows

• The sinks consume the results of processing

• The rule managers add or remove rules

• Information flows are composed of information items
– Items part of the same flow are not necessarily ordered nor of the same kind
– Items part of the same flow are not necessarily of the same kind



Modeling framework

• Different models to capture different viewpoints
– Functional model
– Processing model
– Deployment model
– Interaction model
– Time model
– Data model
– Rule model
– Language model



Functional model
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Functional model
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Functional model: assumptions

• We assume rules can be (logically) decomposed in two parts: C → A
– C is the condition
– A is the action

• Example (in CQL):
Select IStream(Count(*))
From F1 [Range 1 Minute]
Where F1.A > 0

• Accordingly, we split the processing task in two phases
– The detection phase determines the items that trigger the rule
– The production phase use those items to produce the output of the rule

condition

action
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Functional model
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Functional model
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Functional model
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Functional model
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Functional model
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Functional model
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Detection-production cycle

• Every new item I entering the engine causes a 
new detection-production cycle

• If present, the Clock can also generate new items, 
causing a new cycle

• Each cycle is composed of two phases
– Detection phase
– Production phase



Detection phase

• Evaluates all the rules to find those enabled

• Uses the incoming item I, plus the History, plus the data 
into the Knowledge base, if present

• The item I can be accumulated into the History for 
partially enabled rules

• The action part of the enabled rules together with the 
triggering items (A+Seq) is passed to the producer



Production phase

• Produces the output items

• Combining the items that triggered the rule with data present in the 
Knowledge base, if present

• New items are sent to subscribed sinks (through the Forwarder)…

• …but they could also be sent internally to be processed again 
(recursive processing)

• In some systems the action part of fired rules may also change the set 
of deployed rules



Functional model

• Maximum length of Seq a key aspect
– Bounded: only detection of patterns of fixed 

length
• No recursion
• No time windows

– Max = 1: decision based only on the current 
incoming item
• Stateless operators (filter, project, map, …)
• Matching in event-based systems



Functional model

• Presence of the Clock models the ability to 
process rules periodically
– Available in most “streaming” systems
• DSMS, RP

– Not available in many event-based systems
• CEP



Functional model

• The Knowledge base manages the interaction 
with static data
– Available in most DSMS and RP systems
– Not always available in CEP systems



Functional model

• The presence of a loop from the Producer 
back to the Receiver models the ability to 
perform recursive processing
– Present in several CEP systems
– DSMS and RP systems sometimes achieve the 

same expressivity through
• Nested rules
• Circular data-flow graph



Functional model

• Support to dynamic rule changes
– Few systems support it
– In some cases it can be implemented externally…
– … through sinks acting also as rule managers



The semantics of processing

• What determines the output of each 
detection-production cycle?
– The new item entering the engine
– The set of deployed rules
– The items stored into the History
– The content of the Knowledge Base

• Is this enough?



Processing model

• Three policies affect the behavior of the 
system
– The selection policy
– The consumption policy
– The load shedding policy



Selection policy

• Determines whether a rule fires once or 
multiple times
– Also determines which items are selected from 

the History

Receiver

Decider

A
AAA AA A

B ?

A BA B

A0 A1
A0 A1

A0  BA0  BRR

A1  BA1  BRR

A0  BA0  BRR A1  BA1  BRRsingle

multiple

or



Selection policy

• Most systems adopt a multiple selection policy

• Is it adequate? Not always …
– Example rule: Alert fire when smoke and high temperature are detected 

in a short time frame
– 10 sensors read high temperature
– Immediately after one sensor detects smoke
– One would like to receive a single alert, not 10

• A few systems allow this policy to be programmed…
– … some of them on a per-rule base
• E.g., Esper’s every operator



Selection policy: the TESLA case

• TESLA (language of the T-Rex CEP system) provides a customizable 
selection policy on a per rule base

– Example: Multiple selection
define  Fire(area: string, measuredTemp: double)
from    Smoke(area=$a) and 
        each Temp(area=$a and val>50) within 1min. from Smoke
where   area=Smoke.area and measuredTemp=Temp.value

– Example: Single selection
define  Fire(area: string, measuredTemp: double)
from    Smoke(area=$a) and 
        last Temp(area=$a and val>50) within 1min. from Smoke
where   area=Smoke.area and measuredTemp=Temp.val

• TESLA also offers:

• first … within

• n-first … within   n-last … within

• TESLA also offers:

• first … within

• n-first … within   n-last … within



Consumption policy

• Determines how the history changes after 
firing of a rule / what happens when new 
items enter the Decider

Receiver

Decider

A
AA

B
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ABAB

A    BA    BRR

selected

zero
A    BA    BRR



Consumption policy: considerations

• Most systems couple a multiple selection policy with a 
zero consumption policy
– This is the common case with DSMSs, which use (sliding) 

windows to select relevant events

Select IStream(Smoke.area)
From Smoke[Range 1 min], Temp[Range 1 min]
Where Smoke.area = Temp.area AND Temp.val > 50

• The systems that offer a programmable selection policy, 
often offer a programmable consumption policy, too



Consumption policy: The TESLA case

• Zero consumption policy
define   Fire(area: string, measuredTemp: double)
from     Smoke(area=$a) and 
         each Temp(area=$a and val>50)
         within 1min. from Smoke
where    area=Smoke.area and measuredTemp=Temp.value

• Selected consumption policy
define    Fire(area: string, measuredTemp: double)
from      Smoke(area=$a) and 
          each Temp(area=$a and val>50)
          within 1min. from Smoke
where     area=Smoke.area and measuredTemp=Temp.value
consuming Temp

T T T T S

Fire!Fire!Fire!Fire!

S

Fire!Fire!Fire!Fire!

T T T T S

Fire!Fire!Fire!Fire!

T T T T S



Load shedding policy

• Defines how to manage bursts of input data

• Accumulate pending items in the Receiver
– Side effect: the delay increases

• Discard some items
– Side effect: the results might be incomplete



Load shedding policy

• It may seem a system issue …
– To be solved by the Receiver

• … but it strongly impacts the results produced
– The semantics of the rules

• Some systems enable rule managers to specify load 
shedding policies on a per-rule basis
– For instance, the Aurora DSMS allows rules to specify QoS 

requirements and sheds input to stay within the specified 
limits with the available resource



Deployment model

• IFP applications may include a 
large number of sources and 
sinks
– Possibly dispersed over a wide 

geographical area

• It becomes important to 
consider the deployment 
architecture of the engine
– How the components of the 

functional model can be 
distributed to achieve scalability



Deployment model

Distributed

NetworkedCentralized

Rules
Sources Sinks

IFP Engine

Clustered



Deployment model

Clustered

• Processing nodes are 
geographically co-located

• Large bandwidth

• Limited communication delay

• Potentially adopting shared 
memory model

Networked

• Processing nodes are 
geographically distributed

• Bandwidth can be a 
bottleneck

• Communication delay can be 
relatively high

• No shared memory



Deployment model

• Many systems adopt a centralized solution

• Some systems have been explicitly designed for 
cluster deployments

• Only few systems target networked deployments
– In most cases, deployment/configuration is not 

automatic



Distribution: why?

• More processing power to reduce processing 
latency
– Current algorithms already very efficient but …
– … certain computations may still introduce bottlenecks
• Complex aggregations
• Large volumes of streaming data
• Large volumes of background data

• Independent operations can be carried out in 
parallel on multiple machines



Distribution: why?

• Scalability in the number of rules
– Different rules on different machines

• Scalability in the number of sources and sinks
– Input and output connections
– One machine can (efficiently) support only a 

limited number of open connections



Distribution: why?

• The application scenario is intrinsically 
distributed
– Distributed sources, sinks, background knowledge
– Network can become the bottleneck
• Bandwidth
• Delay

– Need to consider how to route and where to 
process your information
• E.g., high frequency traders locate their machine close to 

the sources



Distribution: why?

• Resource-constrained nodes
– Sensors
– Mobile devices

• Offload (only part of) the computation!
– Perform part of the computation in the mobile 

source to reduce network communication 
(battery!)



Deployment model

• Automatic distribution of processing 
introduces the operator placement 
problem

• Given a set of rules (composed of 
operators) and a set of nodes
– How to split the processing load
– How to assign operators to available 

nodes

• In other words
– Given a processing network
– How to map it onto the physical 

network of nodes



Operator placement

• The operator placement problem is still open
– Several proposals
– Different goals
– Difficult to compare solutions and results
• Even in its simplest form the problem is NP-hard



Operator placement: goals

• Load
– Aggregate CPU usage of all the operators deployed 

in each node
– Different variants
• Minimize average load
• Minimize maximum load (avoid/limit bottlenecks)
• Minimize load variance (avoid/limit bursts)



Operator placement: goals

• Latency and load
– Initial placement
• Based on network cost (latency)

– Load-balancing strategy
• To adapt to changes in data and resource conditions



Operator placement: goals

• Latency and bandwidth
– Minimize network usage u = ∑ DR(L)*Lat(L)
• DR(L) data rate over link L
• Lat(L) latency (cost) of link L

– Tolerate paths with additional latency …
– … if they reduce the overall stream bandwidth



Operator placement

• Optimizations: operator reuse



Operator placement

• Optimizations: operator replication



Interaction model

• Models the interactions between components 
in an IFP systems
– Who starts the communication?

Sources SinksIFP Engine



Interaction model
Sources SinksIFP Engine

• Push
• Pull

Observation Model
• Push
• Pull

Forwarding Model
• Push
• Pull

Notification Model



Time model

• Relationship between information items and passing of time

• Ability of an IFP system to associate some kind of ordering 
relationship to information items

• We identified 4 classes:
1. Stream-only
2. Causal
3. Absolute
4. Interval



Stream-only time model
• Used in DSMS / RP

• Timestamps may be present or not

• When present, they are used only to 
order items before entering the engine, 
then they are forgotten

• They are not exposed to the language
– With the exception of windows

• Ordering in output streams is 
conceptually separate from the ordering 
in input streams

CQL/Stream
Select DStream(*)
From F1[Rows 5],

F2[Range 1 Minute]
Where F1.A = F2.A



Causal time model
• Each item has a label 

reflecting some kind of 
causal relationship

• Partial order

Gigascope
Select count(*)
From A, B
Where A.a-1 <= B.b and

A.a+1 > B.b
A.a, B.b
monotonically increase

A

B
C



Absolute time model

• Information items have an associated timestamp

• Defining a single point in time w.r.t. a (logically) unique clock
– Total order

• Timestamps are fully exposed to the language

• Information items can be timestamped at source or entering the engine

TESLA/T-Rex
Define Fire(area: string, measuredTemp: double) 
From Smoke(area=$a) and last

Temp(area=$a and value>45) within 5 min. from Smoke 
Where area=Smoke.area and measuredTemp=Temp.value



Interval time model

• Used for events to include “duration”

• At a first sight, it is a simple extension of the absolute 
time model
– Timestamps with two values:
– Start time and end time

• However, it opens many issues
– What is the successor of an event?
– What is the timestamp associated to a composite event?



Interval time model
• Which is the immediate successor 

of A?
– Choose according to end time only: B

• But it started before A!

– Exclude B: C, D
• Both of them?
• Which of them?

– No other event strictly between A 
and its successor: C, D, E
• Seems a natural definition
• Unfortunately we loose associativity!

– X(YZ) ≠ (X Y)Z

• May prevent rule rewriting for 
processing optimizations



Interval time model

• What is “next” in event processing? by White et. Al
– Proposes a number of desired properties to be satisfied by the “Next” 

function

• There is one model that satisfies them all
– Complete History

• It is not sufficient to encode timestamps using a couple of values
– Timestamps of composite events must embed the timestamps of all the 

events that led to their occurrence
– Possibly, timestamps of unbounded size
• In case of unbounded Seq



Data model
• Studies how the different 

systems
– Represent single data items
– Organize them into data 

flows

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous



Nature of items
• The meaning we associate to 

information items
– Generic data
– Event notifications

• Deeply influences several 
other aspects of an IFP system
– Time model !!!
– Rule language
– Semantics of processing

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous



Format of items
• How information is 

represented

• Influences the way items are 
processed
– In DSMS, the relational model 

requires tuples
– In RP, streams are often typed 

to enable integration with the 
programming language type 
system

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous



Support for uncertainty

• Ability to associate a degree of 
uncertainty to information items

• To the content of items
– Imprecise temperature reading

• To the presence of an item 
(occurrence of an event)
– Spurious RFID reading

• When present, probabilistic 
information is usually exploited in 
rules during processing

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous



Data flows

• Homogeneous
– Each flow contains data with the 

same format and “type”
– E.g. Tuples with identical structure

• Heterogeneous
– Information flows are seen as 

channels connecting sources, 
processors, and sinks

– Each channel may transport items 
with different kind and format

Data

• Generic Data
• Event Notifications

• Records
• Tuples
• Objects
• …

Data Items

Nature of Items

Format

Support for Uncertainty

Data Flows
• Homogeneous
• Heterogeneous



Rule model

• Rules are much more complex 
entities than data items
– Large number of different 

approaches
– Already observed in the previous 

slides

• We classify them into two 
macro classes
– Transforming rules
– Detecting rules

Rule

• Transforming Rules
• Detecting Rules

Type of Rules

Support for Uncertainty



Support for uncertainty
• Two orthogonal aspects

• Support for uncertain input
– Allows rules to deal 

with/reason about uncertain 
input data

• Support for uncertain output
– Allows rules to associate a 

degree of uncertainty to the 
output produced

Rule

• Transforming Rules
• Detecting Rules

Type of Rules

Support for Uncertainty



Language model

• Following the rule model, we define two 
classes of languages:
– Transforming languages
• Declarative languages
• Dataflow languages

– Functional and/or imperative operators

– Detecting languages
• Pattern-based



Declarative languages

• Specify operations to transform input flows to 
produce one or more output flows

• Two main flavors
– Relational (DSMS)
• Select, join, aggregate operators
• Windowing operators to select portions of the stream

– Functional (RP)
• Map, reduce, filter
• Rare use of windowing operators



Dataflow languages

• Specify the desired execution flow
– Starting from primitive operators
– Example: Oracle CEP, Storm

• Can be user-defined

• Usually adopt a graphical notation



Imperative languages
Oracle CEP



Declarative languages

• Specify a firing condition as a pattern

• Select a portion of incoming flows through
– Logic operators
– Content / timing constraints

• The action uses selected items to produce 
new knowledge



Detecting Languages

TESLA / T-Rex

Define Fire(area: string, measuredTemp: double) 
From  Smoke(area=$a) and last 

 Temp(area=$a and value>45)
 within 5 min. from Smoke 

Where  area=Smoke.area and
 measuredTemp=Temp.value

ACTION

CONDITION (PATTERN)
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