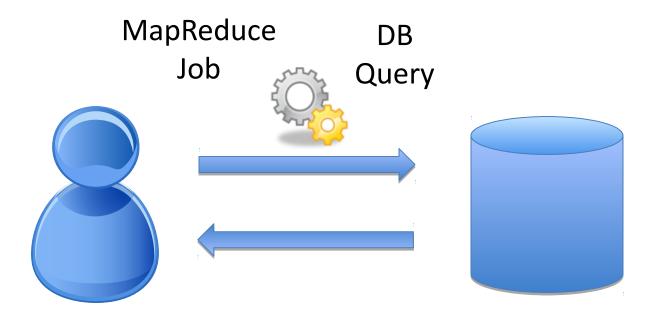
Event/Stream Processing

Alessandro Margara Politecnico di Milano

Batch processing



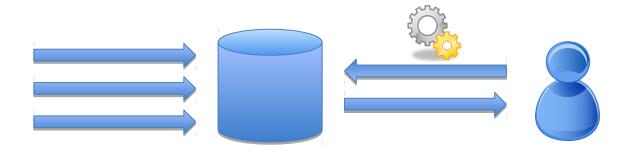
Reactive applications

Velocity!

Reactive applications

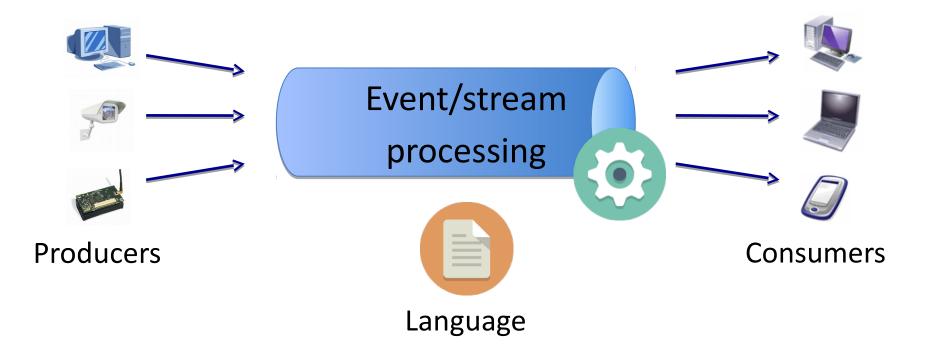
- Typical requirements
 - Process large volumes of data as soon as the data is produced ...
 - High throughput
 - ... to timely produce new results
 - Low delay

Reactive applications



- Can we use existing technologies for batch processing?
 - They are not designed to minimize latency
 - We need a whole new model!

Event/stream processing



Language

- The language needs to provide suitable abstractions to capture the key elements of reactive, event-driven applications
 - Time / temporal relations
 - Seems pretty easy ...
 - ... I'll try to convince you it is not 📢

Processing

- Efficient algorithms to achieve
 - High throughput
 - Low delay

- Exploit parallel/distributed infrastructures
- Optimize processing and communication in distributed environments

Outline

• Background

• Esper: hands on

• Model

BACKGROUND

Background

- Active DBs
 - Early 90s
- Data Stream Management Systems (DSMSs) – 2000s
- Complex Event Processing (CEP) – 2000s
- Reactive Programming (RP)
 - Late 90s
 - Last few years

Active DB

- Traditional DB
 - Human-active database-passive
 - Processing is exclusively driven by queries
- Active DB
 - Event Condition Action (ECA) rules
 - Part of the reactive behavior moves from the application to the DB
 - Mostly DB extensions
 - View maintenance
 - Integrity checking

DSMS

 Data streams are (unbounded) sequences of data elements

 Often, the most recent data is more relevant as it describes the current state of a dynamic system

DSMS

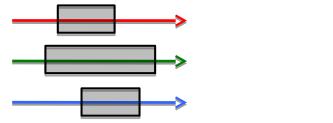
DBMS

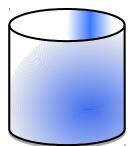
- Persistent data
- One-time queries
- Read intensive
- Random access
- Access plan determined based on the actual data

DSMS

- Transient streams
- Continuous queries
- Update intensive (append)
- Sequential access (one pass)
- Unpredictable data characteristics and arrival patterns

DSMS (CQL)





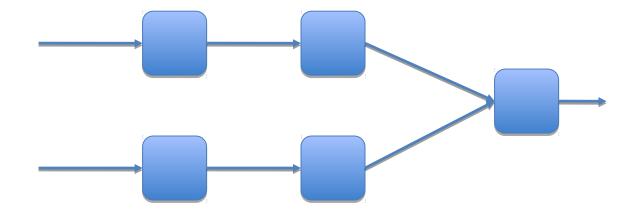
Stream-to-Relation (Windows) Relation-to-Relation (Relational Operators) Relation-to-Stream (New/All results)

DSMS (SQuAl)

• Stream-to-stream operators

– E.g., filter, project, map, aggregate, join, …

- Embedded windows to make operators non-blocking
- Operators combined in a dataflow graph

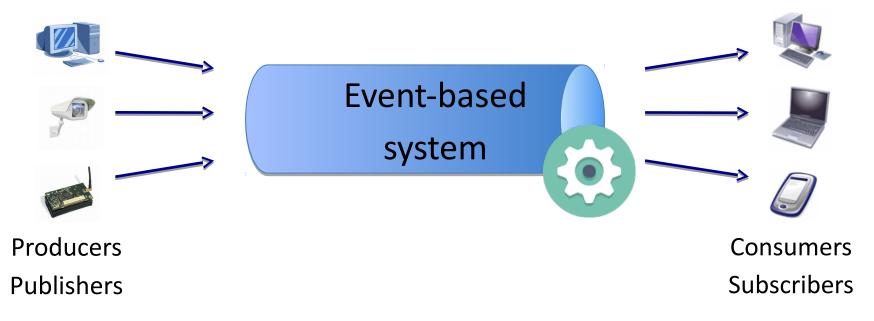


Event-based systems

- Software architecture in which the components
 - Publish notifications of event occurrences
 - Subscribe to the events they are interested in
- Ideal for dynamic environments
 - Loosely coupled components
 - Implicit communication
 - Anonymous
 - Asynchronous
 - Multicast

Event-based systems

- In event-based systems the processing task consists in matching events against subscriptions
- Different degrees of expressivity
 - topic-based, content-based, ...



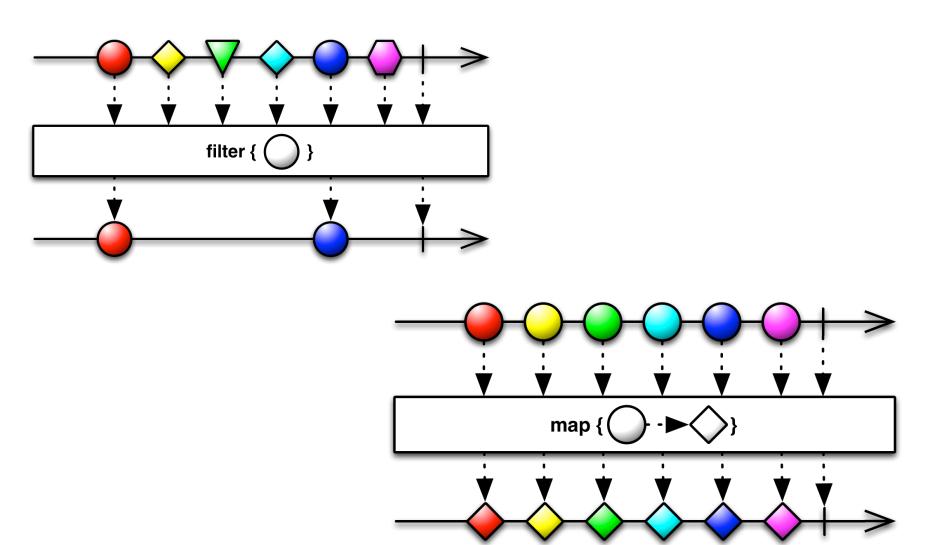
CEP

- CEP adds the ability to deploy rules that define *composite* events starting from *primitive* ones
 - E.g. if Temp(val > 10) and then Smoke within 5
 min, trigger Fire

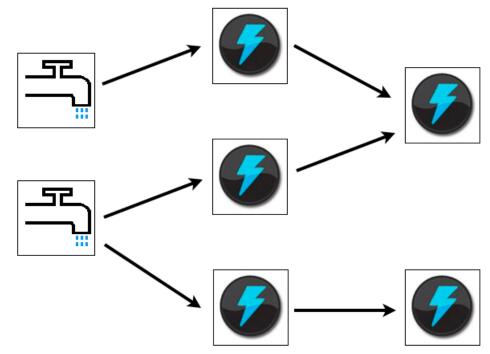
RP

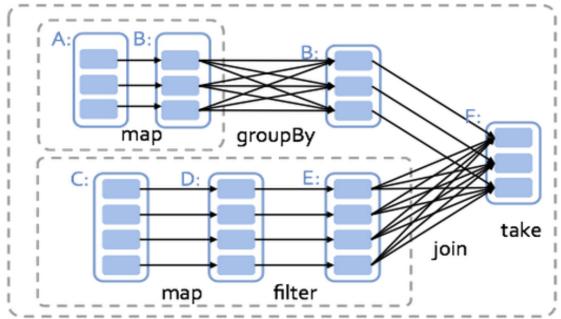
- Programming abstractions to simplify the design of reactive applications
- Focus on streams as unbounded collections of elements
 - (Functional) operators produce output streams from input streams
 - Similar to dataflow DSMSs
- Focus on programming language integration

RP



- Several systems have been proposed to perform streaming computations on clusters
 - Similar to MapReduce / Hadoop ...
 - ... but focusing on streaming data
- Perhaps the most well known are
 - Apache Storm / Heron
 - Dataflow approach
 - Used within Twitter
 - Apache Spark Streaming, Apache Flink
 - Functional approach
 - You will see it in the next lectures





- New concerns
 - Query deployment in large computational infrastructures
 - Operator placement
 - Operator migration
 - Fault tolerance

ESPER

Esper in a nutshell

- EPL: rich language to express rules
 - Grounded on the DSMS approach
 - Windowing
 - Relational select, join, aggregate, ...
 - Relation-to-stream operators to produce output
 - Sub-queries
 - Queries can be combined to form a graph
 - Introduces some features of CEP languages
 - Pattern detection
- Designed for performance
 - High throughput
 - Low latency

Esper in a nutshell

- Interaction with static / historical data
- Configurable push or pull communication
- Several adapters for input/output
 CSV, JMS in/out, API, DB, Socket, HTTP
- Two versions
 - Esper 🜄 Java
 - NEsper 🔽 .NET / C#
- Esper HA
 - High Availability
 - Ensures that the state is recoverable in the case of failure

Running example

- Count the number of fires detected using a set of smoke and temperature sensors in the last 10 minutes
- Events
 - Smoke event: String sensor, boolean state
 - Temperature event: String sensor, double temperature
 - Fire event: String sensor, boolean smoke, double temperature
- Condition:

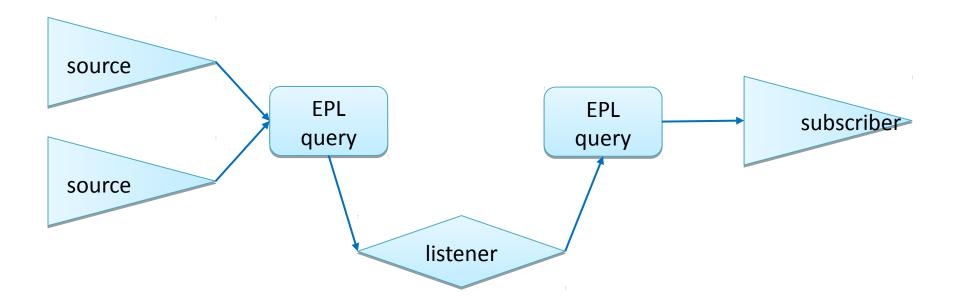
- Fire: at the same sensor smoke followed by temperature>50

Processing model

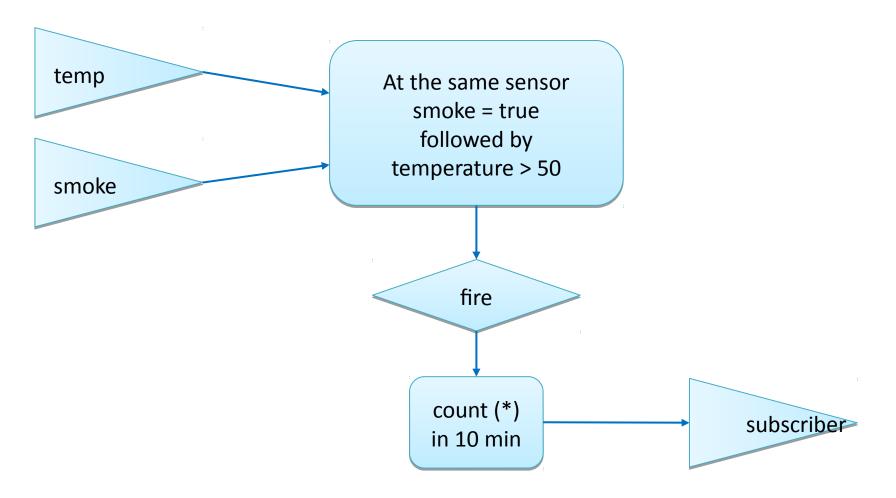
- Builds on four abstractions
 - Sources
 - Produce data items from sensors, trace files, etc.
 - Registered EPL queries
 - Continuously executed against the data items produced by the sources
 - Listeners
 - Receive data items from queries
 - Push data items to other queries
 - Subscribers
 - Receive processed data tuples

Processing model

 Sources, queries, listeners, and subscribers are connected to form a processing graph



Running Example



Declare event types

• Two ways

- EPL create schema clause

Runtime configuration API addEventType

• Syntax

create schema
schema_name [as]
(property_name property_type
[,property_name property_type [,...])
[inherits inherited_event_type
[, inherited_event_type] [,...]]

Running example

```
create schema
   SmokeSensorEvent(
   sensor string,
   smoke boolean
);
                          create schema
                             TemperatureSensorEvent(
                              sensor string,
                              temperature double
                           );
create schema
   FireComplexEvent(
   sensor string,
   smoke boolean,
   temperature double
```

```
);
```

Event Processing Language (EPL)

• EPL is similar to SQL

- Select, where, ...

- Event streams and views instead of tables
 - Views define the data available for the query
 - Views can represent windows over streams
 - Views can also sort events, derive statistics from event attributes, group events, ...

EPL syntax

```
[insert into insert_into_def]
select select list
from stream_def [as name]
[, stream_def [as name]] [,...]
[where search_conditions]
[group by grouping_expression_list]
[having grouping_search_conditions]
[output output_specification]
[order by order_by_expression_list]
[limit num_rows]
```

Simple examples

select	*
from	TemperatureSensorEvent
where	temperature>50

select avg(temperature) from TemperatureSensorEvent

Running example

insert into FireComplexEvent
select a.sensor as sensor,
 a.smoke as smoke,
 b.temperature as temperature
from pattern
 [every a=SmokeSensorEvent(smoke=true)
 ->
 b=TemperatureSensorEvent(
 sensor=a.sensor, temperature>50)];

select count(*)
from FireComplexEvent.win:time(10 min);

Running example

http://esper-epl-tryout.appspot.com/epltryout/mainform.html

EPL Statements EPL Module Text Enter EPL Here: create schema SmokeSensorEvent(sensor string, smoke boolean); create schema TemperatureSensorEvent(sensor string, temperature double); create schema FireComplexEvent(sensor string, smoke boolean, temperature double); insert into FireComplexEvent select a.sensor as sensor, a.smoke as smoke, b.temperature as temperature from pattern [every a=SmokeSensorEvent(smoke=true) -> b=TemperatureSensorEvent(sensor=a.sensor, temperature>50)];

select count(*)
from FireComplexEvent.win:time(10 min);

Time And Event Sequence

Beginning Of Time All Output Events Provide a timestamp to start at: 2001-01-01 08:00:00.000 Submit All Audit Text Output Per Statement Advance Time and Send Events Audit Text Per Statement Enter sequence of time and events: SmokeSensorEvent={sensor='S1', smoke=false} At: 2001-01-01 08:00:02.000 TemperatureSensorEvent={sensor='S1', temperature=30} Statement: Stmt-4 Insert t=t.plus(1 seconds) FireComplexEvent={sensor='S1', smoke=true, temperature=55.0} SmokeSensorEvent={sensor='S1', smoke=true} Statement: Stmt-5 TemperatureSensorEvent={sensor='S1', temperature=40} Insert t=t.plus(1 seconds) Stmt-5-output={count(*)=1} At: 2001-01-01 08:10:02.000 SmokeSensorEvent={sensor='S2', smoke=false} Statement: Stmt-5 TemperatureSensorEvent={sensor='S1', temperature=55} Insert Stmt-5-output={count(*)=0} t=t.plus(11 min)

Scenario Results

Running example

```
SmokeSensorEvent={sensor='S1', smoke=false}
TemperatureSensorEvent={sensor='S1', temperature=30}
t=t.plus(1 seconds)
```

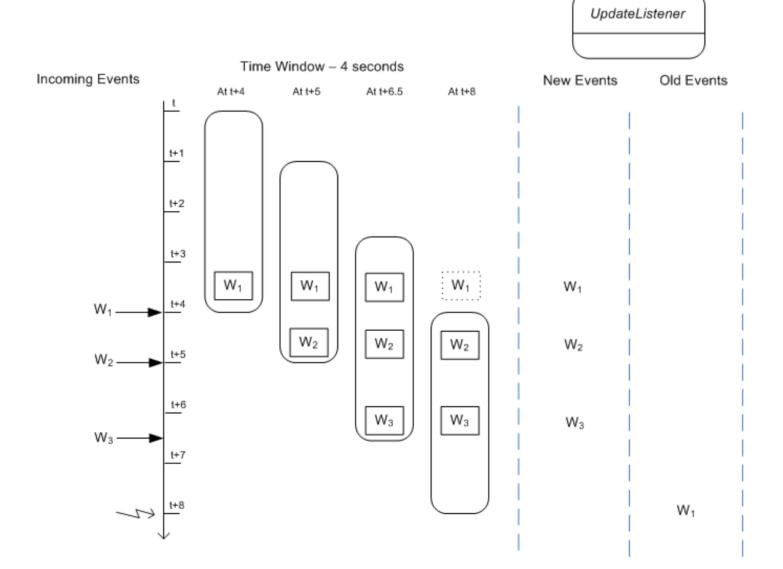
```
SmokeSensorEvent={sensor='S1', smoke=true}
TemperatureSensorEvent={sensor='S1', temperature=40}
t=t.plus(1 seconds)
```

```
SmokeSensorEvent={sensor='S2', smoke=false}
TemperatureSensorEvent={sensor='S1', temperature=55}
t=t.plus(11 min)
```

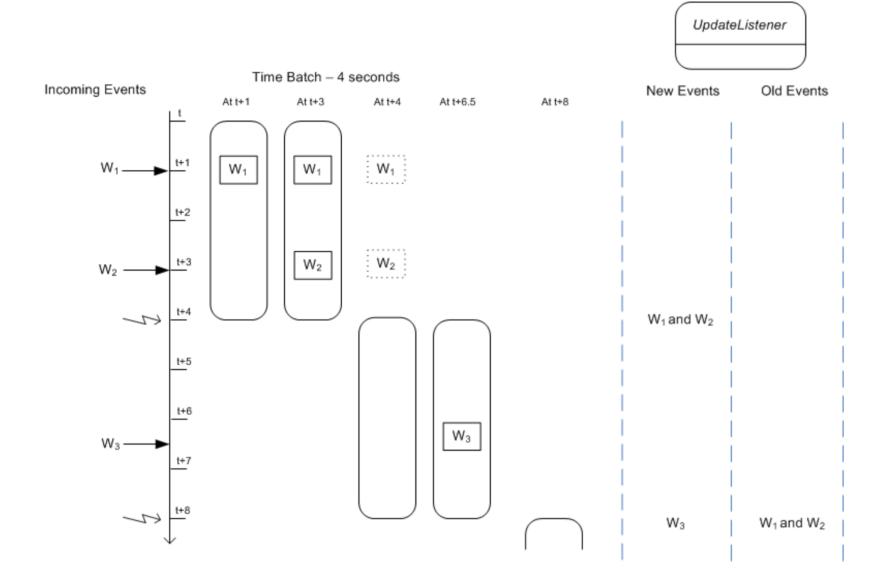
Windows

Туре	Syntax	Description
Logical Sliding	win:time(<i>time_period</i>)	Sliding window that covers the specified time interval into the past
Logical Tumbling	win:time_batch(<i>time_period</i> [<i>, reference point</i>] [<i>, flow control</i>])	Tumbling window that batches events and releases them every specified time interval, with flow control options
Physical Sliding	win:length(<i>size</i>)	Sliding window that covers the specified number of elements into the past
Physical Tumbling	win:length_batch(<i>size</i>)	Tumbling window that batches events and releases them when a given minimum number of events has been collected

Sliding window



Tumbling window



Physical sliding window

Time

Output control

• The *output* clause is optional in Esper

- It is used to
 - Control the output rate
 - Suppress output events

output [[all | first| last | snapshot]
every output_rate [seconds | events]]

Output control

Control advancement of sliding windows

select avg(temperature)
from TemperatureSensorEvent.win:length(4)
output snapshot every 2 events

select avg(temperature)
from TemperatureSensorEvent.win:time(4 sec)
output snapshot every 2 sec

 An event pattern emits when one or more event occurrences match the pattern definition

• Patterns can include temporal operators

Pattern matching is implemented using state machines

Content-based event selection
 TemperatureEventStream(sensor="S0",
 temperature>50)

 Time-based event observers specify time intervals or time schedules timer:interval(10 seconds)
 Fires after 10 seconds timer:at(5, *, *, *, *)

Syntax: minutes, hours, days of month, months, days of week

Pattern matching operators

- Logical operators
 - and, or, not
- Temporal operators that operate on event order *- -> (followed-by)*
- Creation/termination control

 every, every-distinct, [num] and until
- Guards filter out events and cause termination
 timer:within, timer:withinmax and *while-*expression

```
select a.sensor from pattern
[every (
    a = SmokeSensorEvent(smoke=true)
    ->
    TemperatureSensorEvent(
       temperature>50,
       sensor=a.sensor)
    where timer:within(2 sec)
)]
```

• every expr

- When expr evaluates to true or false ...

- ... the pattern matching for *expr* should re-start

• Without the every operator the pattern matching process does not re-start

This pattern fires when encountering an A event and then stops
 A

 This pattern keeps firing when encountering A events, and does not stop every A

A1 B1 B2 A2 A3 B3 A4 B4

every $(A \rightarrow B)$

Detect an event A followed by an event B. At the time when B occurs, the pattern matches and restarts looking for the next A event

B1	{A1, B1}
B3	{A2, B3}
B4	{A4, B4}

A1 B1 B2 A2 A3 B3 A4 B4

every A -> B

The pattern fires for every A followed by a B event

B1	{A1, B1}
B3	{A2, B3}, {A3, B3}
B4	{A4, B4}

A1 B1 B2 A2 A3 B3 A4 B4

A -> every B The pattern fires for an A event followed by every B event

B1	{A1, B1}
B2	{A1, B2}
B3	{A1, B3}
B4	{A1, B4}

A1 B1 B2 A2 A3 B3 A4 B4

every A -> every B The pattern fires for every A event followed by every B event

B1	{A1, B1}
B2	{A1, B2}
B3	{A1, B3}, {A2, B3}, {A3, B3}
B4	{A1, B4}, {A2, B4}, {A3, B4}, {A4, B4}

- With the every operator
 - Multiple (partial) instances of the same pattern can be active at the same time
 - Each instance can consume some resources when events enter the engine
- End pending instances whenever possible
 - With the *timer:within* construct
 - With the *and not* construct
- Note: the data windows on a pattern do not always limit pattern sub-expression lifetime

A1 A2 B1

Pattern	Results
every A -> B	{A1, B1}, {A2, B1}
every A -> (B and not A)	{A2, B1}

The *and not* operator causes the sub-expression looking for {A1, B?} to end when A2 arrives

A1@1 A2@3 B1@4

Pattern	Results
every A -> B	{A1, B1}, {A2, B1}
every A -> (B where timer:within(2 sec))	{A2, B1}

The *timer:within* operator causes the sub-expression looking for {A1, B?} to end after 2 seconds

Combine queries

• The insert into clause forwards events to other streams for further downstream processing

insert into FireComplexEvent
select a.sensor as sensor,
 a.smoke as smoke,
 b.temperature as temperature
from pattern
 [every a=SmokeSensorEvent(smoke=true)
 ->
 b=TemperatureSensorEvent(
 sensor=a.sensor, temperature>50)];
select count(*)

from FireComplexEvent.win:time(10 min);

Exercise

- Application scenario: taxi trips in NYC
- Two types of events
 Pickup(int taxi_id, int location_id)
 Dropoff(int taxi_id, int location_id, int amount)
- Definitions

– Route = pair of (pickup location, dropoff location)

Exercise

- Exercise: find the 10 most profitable routes in the last 30 minutes
 - The profitability of a route is the sum of the amounts of all the taxi trips for that route
 - Consider routes that *ended* within the last 30 minutes

Assume a stock tick event StockTick(String name, int price) with the fields name and price representing the name of an company and the associated price for a stock tick.

• Write a query which computes the average prices over the last 30 seconds

select avg(price)
from StockTickEvent.win:time(30 sec)

Assume a stock tick event StockTick(String name, int price) with the fields name and price representing the name of an company and the associated price for a stock tick.

• Write a query which alerts on each "IBM" stock tick with a price greater then 80 and within the next 60 seconds

every StockTickEvent(name="IBM",price>80)
where timer:within(60 seconds)

Assume a stock tick event StockTick(String name, int price) with the fields name and price representing the name of an company and the associated price for a stock tick.

• Write a query that returns the average price per name for the last 100 stock ticks

select name, avg(price) as averagePrice
from StockTickEvent.win:length(100)
group by name

• Taxi routes exercise: find the 10 most profitable routes in the last 30 minutes

```
insert into Route
select
pu.pickupLocation as pickupLocation,
do.dropoffLocation as dropoffLocation,
do.amount as amount
from pattern
[every pu=Pickup ->
 (do=Dropoff(taxiId = pu.taxiId)
where timer:within(30 min))]
select pickupLocation, dropoffLocation, sum(amount) as sum
from Route
group by pickupLocation, dropoffLocation
output all every 1 events
order by sum desc
limit 10
```

MODEL

Why a model?

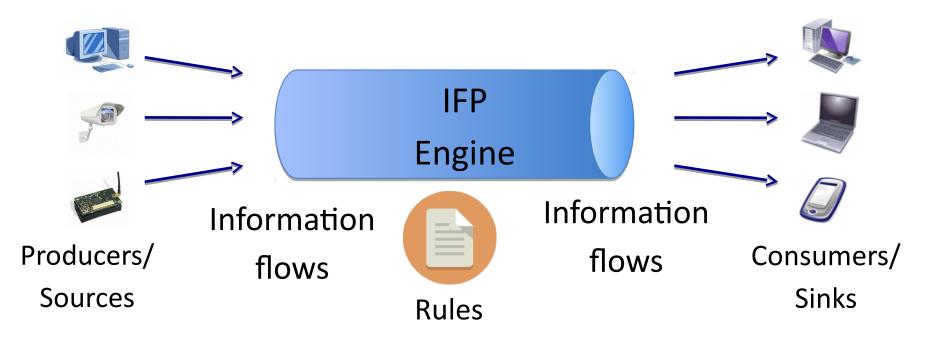
- As discussed in the background
 - Different communities
 - Different vocabularies
 - Different goals
 - Different approaches
 - Different assumptions

Why a model?

- To better understand existing systems
- To classify existing systems
- To help comparing existing systems
- To understand the strengths and the weaknesses of each approach
- To identify solved problems and open issues

Vocabulary

To avoid biases, we introduce a precise terminology

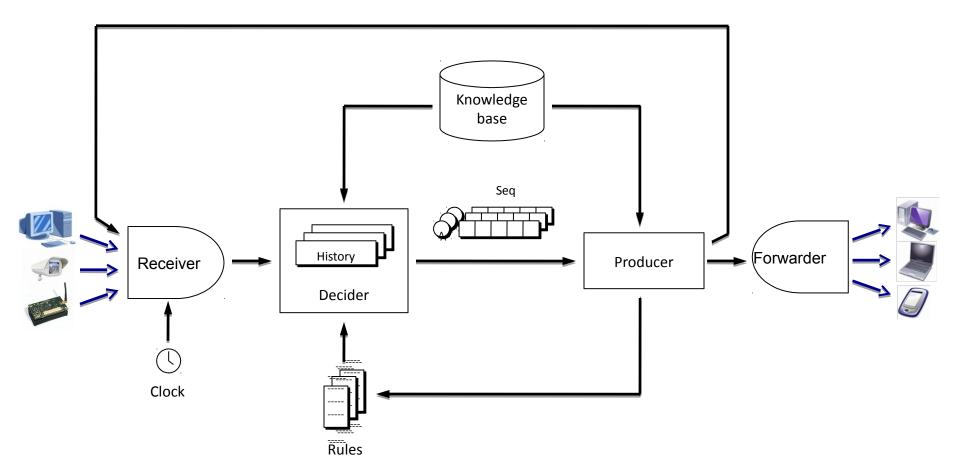


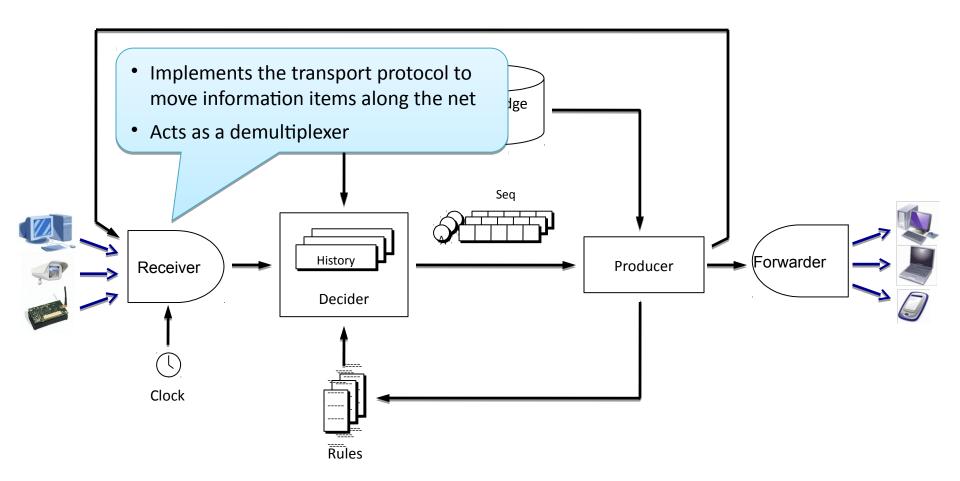
The IFP domain

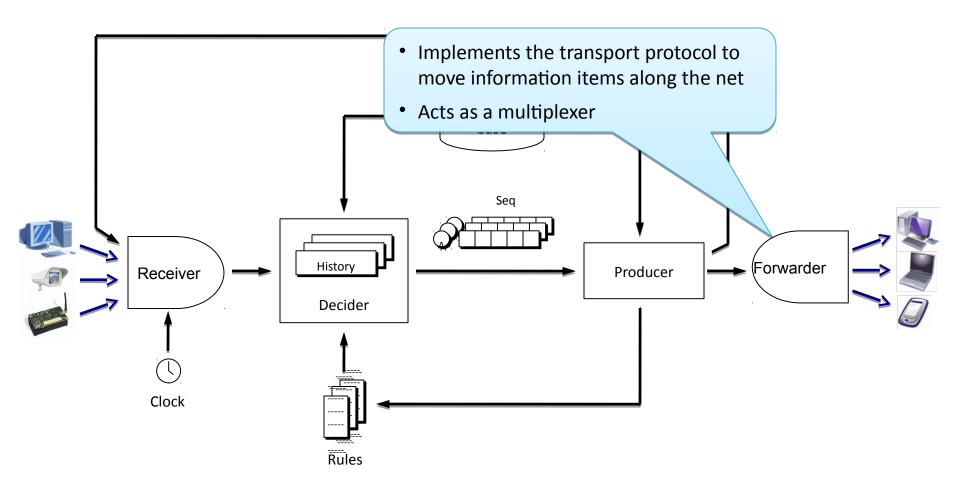
- The IFP engine processes incoming flows of information according to a set of processing rules
- The sources produce the input information flows
- The sinks consume the results of processing
- The rule managers add or remove rules
- Information flows are composed of information items
 - Items part of the same flow are not necessarily ordered nor of the same kind
 - Items part of the same flow are not necessarily of the same kind

Modeling framework

- Different models to capture different viewpoints
 - Functional model
 - Processing model
 - Deployment model
 - Interaction model
 - Time model
 - Data model
 - Rule model
 - Language model

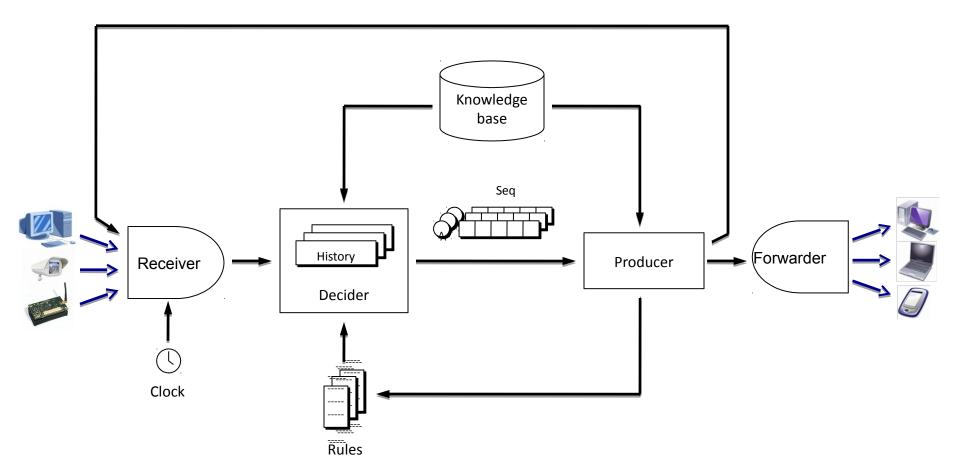


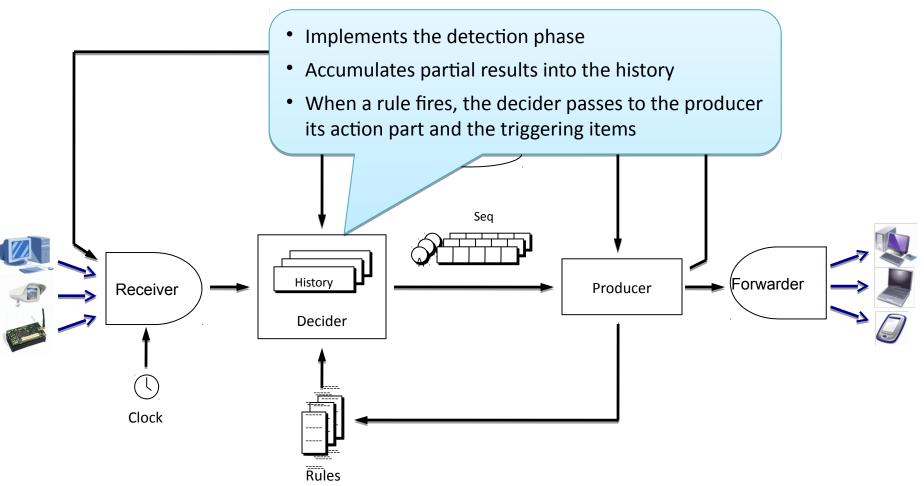


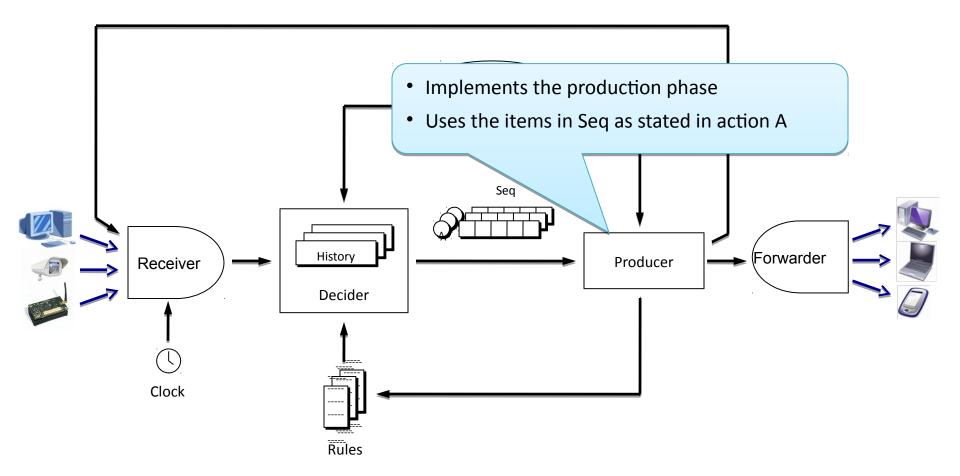


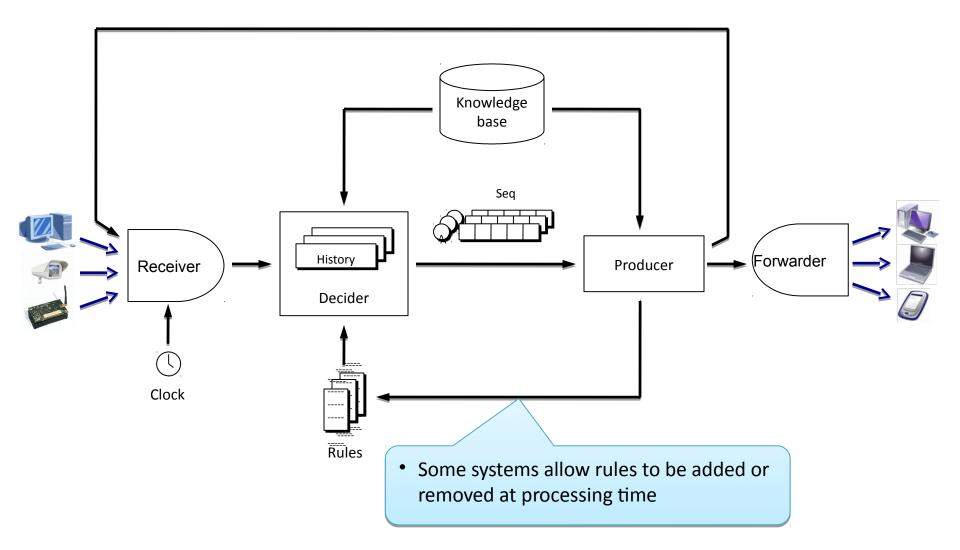
Functional model: assumptions

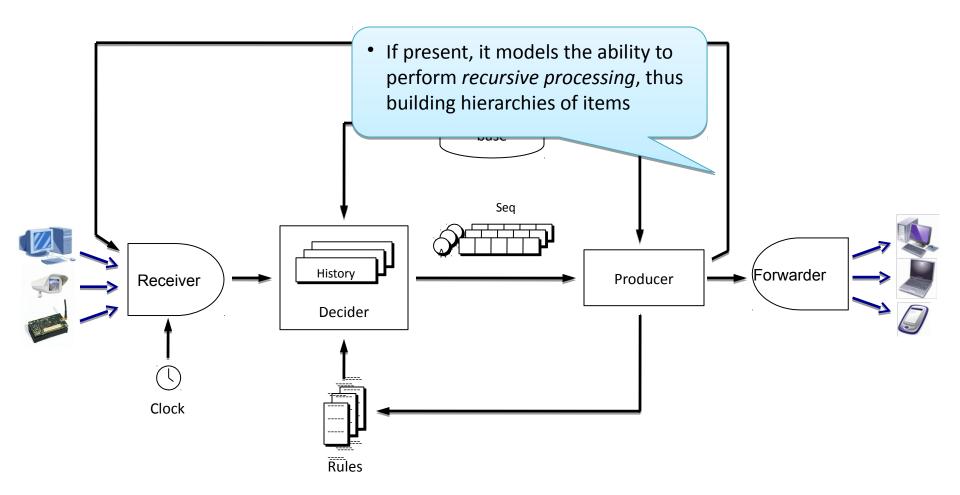
- We assume rules can be (logically) decomposed in two parts: C \rightarrow A
 - C is the condition
 - A is the action
- Accordingly, we split the processing task in two phases
 - The detection phase determines the items that trigger the rule
 - The production phase use those items to produce the output of the rule

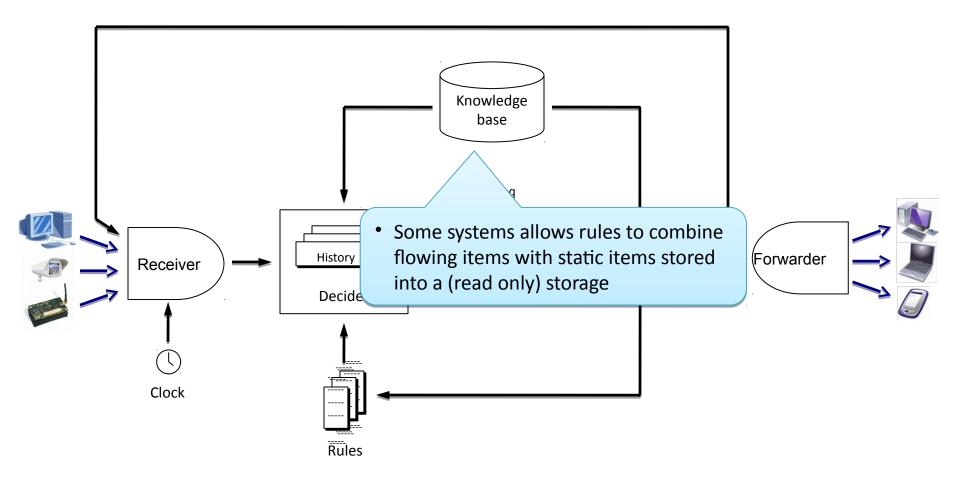


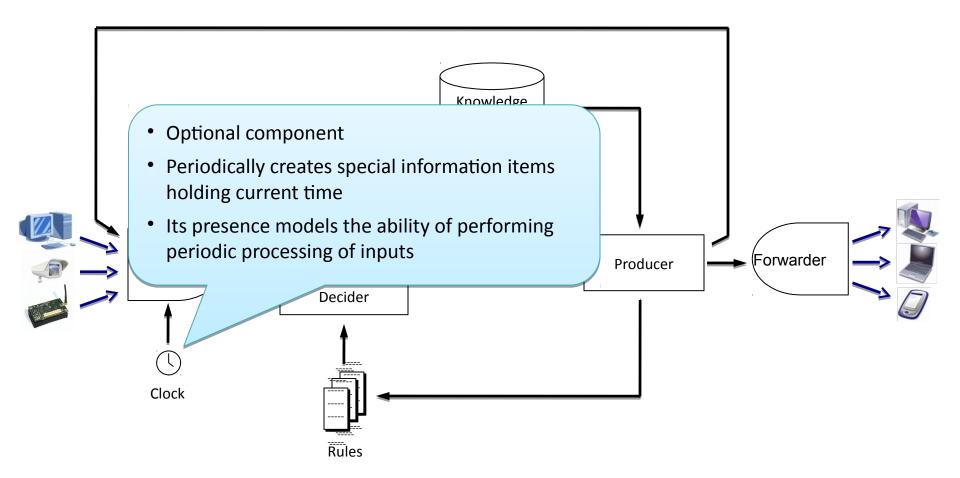












Detection-production cycle

- Every new item I entering the engine causes a new detection-production cycle
- If present, the Clock can also generate new items, causing a new cycle
- Each cycle is composed of two phases
 - Detection phase
 - Production phase

Detection phase

- Evaluates all the rules to find those enabled
- Uses the incoming item I, plus the History, plus the data into the Knowledge base, if present
- The item I can be accumulated into the History for partially enabled rules
- The action part of the enabled rules together with the triggering items (A+Seq) is passed to the producer

Production phase

- Produces the output items
- Combining the items that triggered the rule with data present in the Knowledge base, if present
- New items are sent to subscribed sinks (through the Forwarder)...
- ...but they could also be sent internally to be processed again (recursive processing)
- In some systems the action part of fired rules may also change the set of deployed rules

- Maximum length of Seq a key aspect
 - Bounded: only detection of patterns of fixed length
 - No recursion
 - No time windows
 - Max = 1: decision based only on the current incoming item
 - Stateless operators (filter, project, map, ...)
 - Matching in event-based systems

- Presence of the Clock models the ability to process rules periodically
 - Available in most "streaming" systems
 - DSMS, RP
 - Not available in many event-based systems
 - CEP

- The Knowledge base manages the interaction with static data
 - Available in most DSMS and RP systems
 - Not always available in CEP systems

- The presence of a loop from the Producer back to the Receiver models the ability to perform recursive processing
 - Present in several CEP systems
 - DSMS and RP systems sometimes achieve the same expressivity through
 - Nested rules
 - Circular data-flow graph

- Support to dynamic rule changes
 - Few systems support it
 - In some cases it can be implemented externally...
 - ... through sinks acting also as rule managers

The semantics of processing

- What determines the output of each detection-production cycle?
 - The new item entering the engine
 - The set of deployed rules
 - The items stored into the History
 - The content of the Knowledge Base

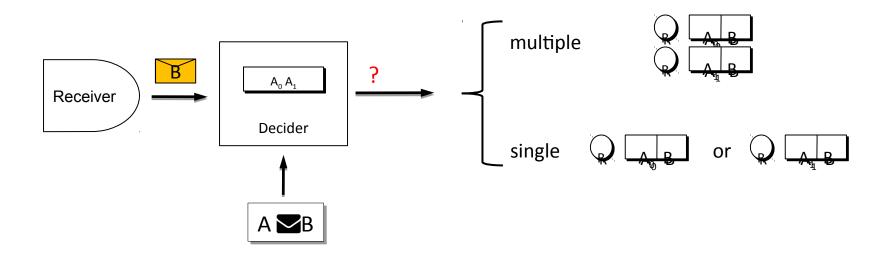
• Is this enough?

Processing model

- Three policies affect the behavior of the system
 - The selection policy
 - The consumption policy
 - The load shedding policy

Selection policy

- Determines whether a rule fires once or multiple times
 - Also determines which items are selected from the History

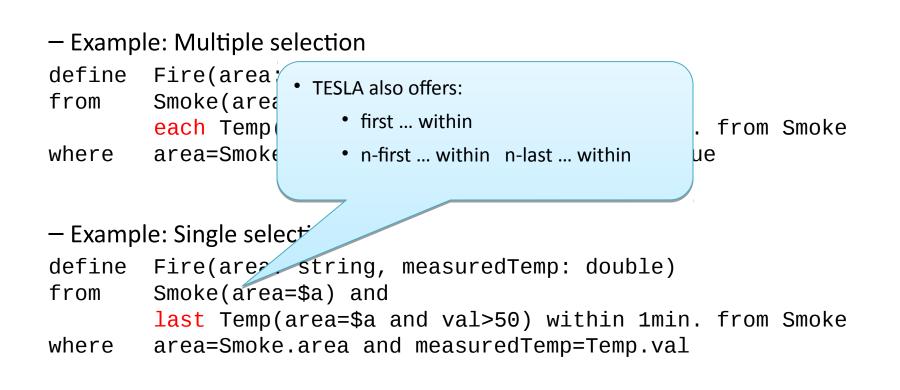


Selection policy

- Most systems adopt a multiple selection policy
- Is it adequate? Not always ...
 - Example rule: Alert fire when smoke and high temperature are detected in a short time frame
 - 10 sensors read high temperature
 - Immediately after one sensor detects smoke
 - One would like to receive a single alert, not 10
- A few systems allow this policy to be programmed...
 - ... some of them on a per-rule base
 - E.g., Esper's every operator

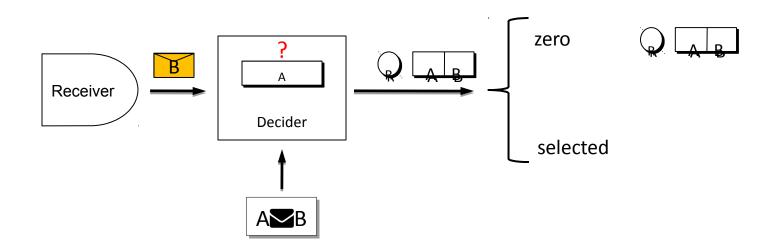
Selection policy: the TESLA case

• TESLA (language of the T-Rex CEP system) provides a customizable selection policy on a per rule base



Consumption policy

 Determines how the history changes after firing of a rule / what happens when new items enter the Decider



Consumption policy: considerations

- Most systems couple a multiple selection policy with a zero consumption policy
 - This is the common case with DSMSs, which use (sliding) windows to select relevant events

```
Select IStream(Smoke.area)
From Smoke[Range 1 min], Temp[Range 1 min]
Where Smoke.area = Temp.area AND Temp.val > 50
```

• The systems that offer a programmable selection policy, often offer a programmable consumption policy, too

Consumption policy: The TESLA case

• Zero consumption policy

define Fire(area: string, measuredTemp: double)
from Smoke(area=\$a) and
 each Temp(area=\$a and val>50)
 within 1min. from Smoke

where area=Smoke.area and measuredTemp=Temp.value

• Selected consumption policy

define Fire(area: string, measuredTemp: double)
from Smoke(area=\$a) and
 each Temp(area=\$a and val>50)
 within 1min. from Smoke
where area=Smoke.area and measuredTemp=Temp.value
consuming Temp

Load shedding policy

• Defines how to manage bursts of input data

- Accumulate pending items in the Receiver
 Side effect: the delay increases
- Discard some items

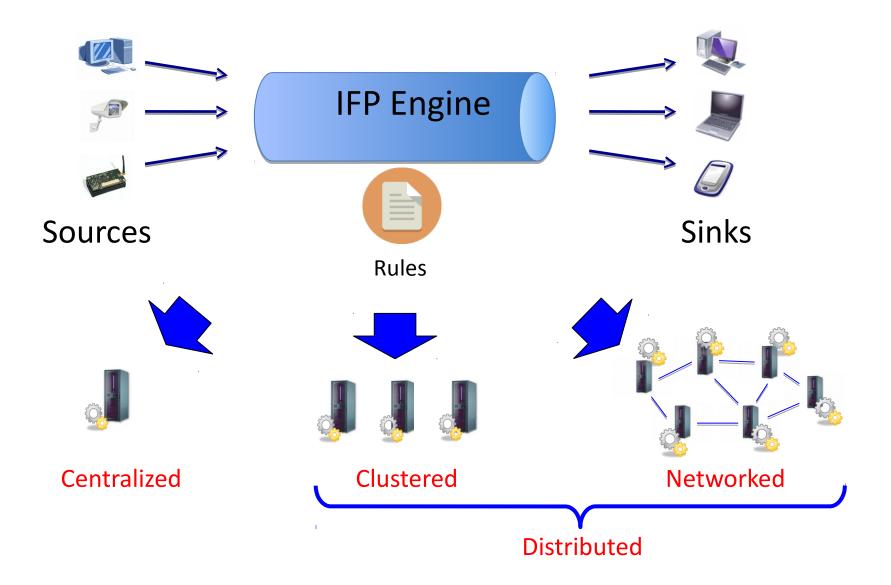
- Side effect: the results might be incomplete

Load shedding policy

- It may seem a system issue ...
 - To be solved by the Receiver
- ... but it strongly impacts the results produced
 The semantics of the rules

- Some systems enable rule managers to specify load shedding policies on a per-rule basis
 - For instance, the Aurora DSMS allows rules to specify QoS requirements and sheds input to stay within the specified limits with the available resource

- IFP applications may include a large number of sources and sinks
 - Possibly dispersed over a wide geographical area
- It becomes important to consider the *deployment architecture* of the engine
 - How the components of the functional model can be distributed to achieve scalability



Clustered

- Processing nodes are geographically co-located
- Large bandwidth
- Limited communication delay
- Potentially adopting shared memory model

Networked

- Processing nodes are geographically distributed
- Bandwidth can be a bottleneck
- Communication delay can be relatively high
- No shared memory

- Many systems adopt a centralized solution
- Some systems have been explicitly designed for cluster deployments
- Only few systems target networked deployments

 In most cases, deployment/configuration is not
 automatic

Distribution: why?

- More processing power to reduce processing latency
 - Current algorithms already very efficient but ...
 - ... certain computations may still introduce bottlenecks
 - Complex aggregations
 - Large volumes of streaming data
 - Large volumes of background data
- Independent operations can be carried out in parallel on multiple machines

Distribution: why?

Scalability in the number of rules
 Different rules on different machines

- Scalability in the number of sources and sinks
 - Input and output connections
 - One machine can (efficiently) support only a limited number of open connections

Distribution: why?

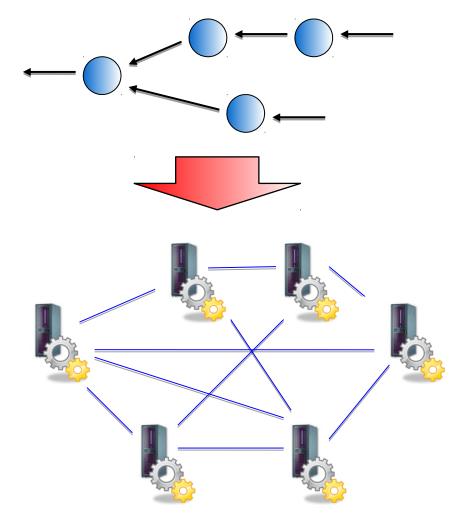
- The application scenario is *intrinsically* distributed
 - Distributed sources, sinks, background knowledge
 - Network can become the bottleneck
 - Bandwidth
 - Delay
 - Need to consider how to route and where to process your information
 - E.g., high frequency traders locate their machine close to the sources

Distribution: why?

- Resource-constrained nodes
 - Sensors
 - Mobile devices
- Offload (only part of) the computation!
 - Perform part of the computation in the mobile source to reduce network communication (battery!)

Deployment model

- Automatic distribution of processing introduces the *operator placement* problem
- Given a set of rules (composed of operators) and a set of nodes
 - How to split the processing load
 - How to assign operators to available nodes
- In other words
 - Given a processing network
 - How to map it onto the physical network of nodes



Operator placement

- The operator placement problem is still open
 - Several proposals
 - Different goals
 - Difficult to compare solutions and results
 - Even in its simplest form the problem is NP-hard

Operator placement: goals

- Load
 - Aggregate CPU usage of all the operators deployed in each node
 - Different variants
 - Minimize average load
 - Minimize maximum load (avoid/limit bottlenecks)
 - Minimize load variance (avoid/limit bursts)

Operator placement: goals

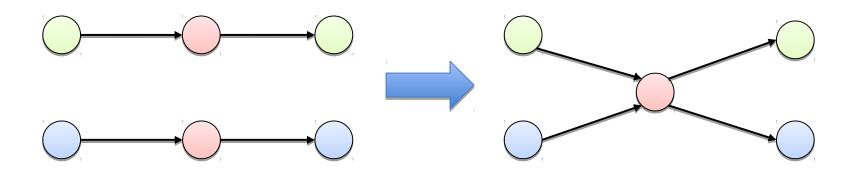
- Latency and load
 - Initial placement
 - Based on network cost (latency)
 - Load-balancing strategy
 - To adapt to changes in data and resource conditions

Operator placement: goals

- Latency and bandwidth
 - Minimize network usage $u = \sum DR(L)*Lat(L)$
 - DR(L) data rate over link L
 - Lat(L) latency (cost) of link L
 - Tolerate paths with additional latency ...
 - ... if they reduce the overall stream bandwidth

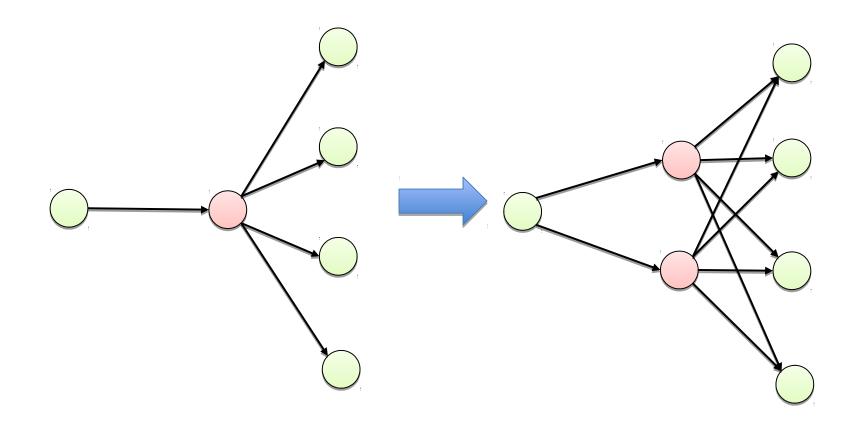
Operator placement

• Optimizations: operator reuse

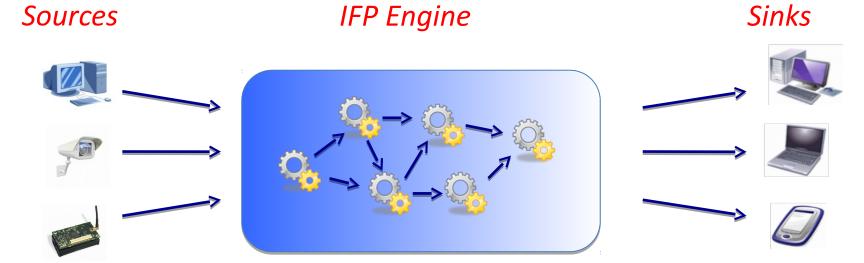


Operator placement

• Optimizations: operator replication



Interaction model



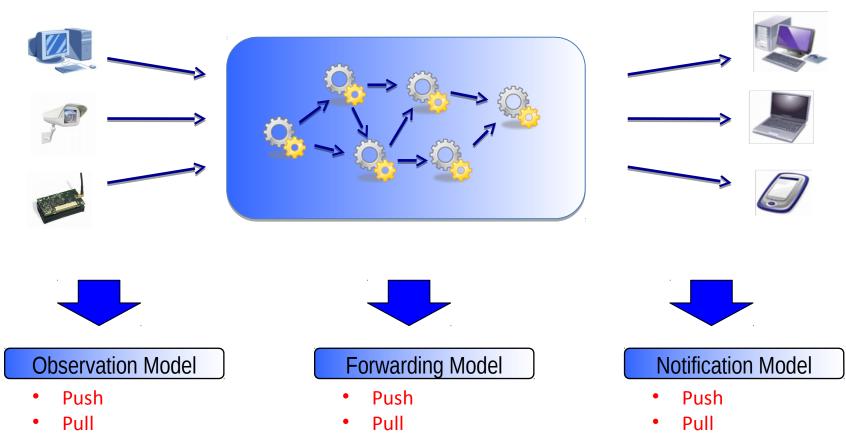
- Models the interactions between components in an IFP systems
 - Who starts the communication?

Interaction model

Sources

IFP Engine

Sinks



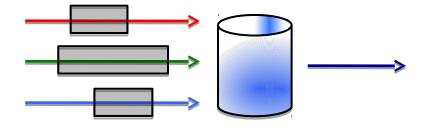
Time model

- Relationship between information items and passing of time
- Ability of an IFP system to associate some kind of ordering relationship to information items
- We identified 4 classes:
 - 1. Stream-only
 - 2. Causal
 - 3. Absolute
 - 4. Interval

Stream-only time model

- Used in DSMS / RP
- Timestamps may be present or not
- When present, they are used only to order items before entering the engine, then they are forgotten
- They are not exposed to the language
 With the exception of windows
- Ordering in output streams is conceptually separate from the ordering in input streams

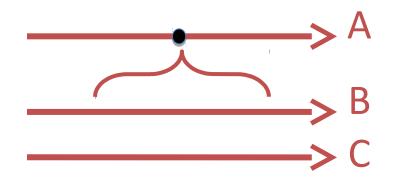
<u>CQL/Stream</u>		
Select	DStream(*)	
From	F1[Rows 5],	
	F2[Range 1 Minute]	
Where	F1.A = F2.A	



Causal time model

- Each item has a label reflecting some kind of causal relationship
- Partial order

<u>Gigascope</u>		
Select cou	unt(*)	
From A	А, В	
Where A	A.a-1 <= B.b and	
ŀ	A.a+1 > B.b	
A.a, B.b		
monotonically increase		



Absolute time model

- Information items have an associated timestamp
- Defining a single point in time w.r.t. a (logically) unique clock
 Total order
- Timestamps are fully exposed to the language
- Information items can be timestamped at source or entering the engine

TESLA/T-Rex

Define Fire(area: string, measuredTemp: double)

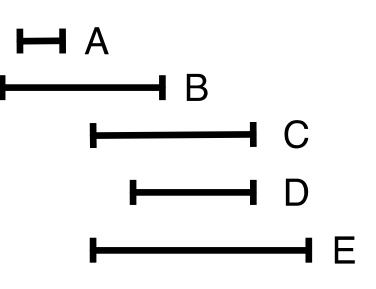
From Smoke(area=\$a) and last Temp(area=\$a and value>45) within 5 min. from Smoke Where area=Smoke.area and measuredTemp=Temp.value

Interval time model

- Used for events to include "duration"
- At a first sight, it is a simple extension of the absolute time model
 - Timestamps with two values:
 - Start time and end time
- However, it opens many issues
 - What is the successor of an event?
 - What is the timestamp associated to a composite event?

Interval time model

- Which is the immediate successor of A?
 - Choose according to end time only: B
 - But it started before A!
 - Exclude B: C, D
 - Both of them?
 - Which of them?
 - No other event strictly between A and its successor: C, D, E
 - Seems a natural definition
 - Unfortunately we loose associativity!
 - $X \mathbf{\Sigma}(Y \mathbf{\Sigma} Z) \neq (X \mathbf{\Sigma} Y) \mathbf{\Sigma} Z$
 - May prevent rule rewriting for processing optimizations



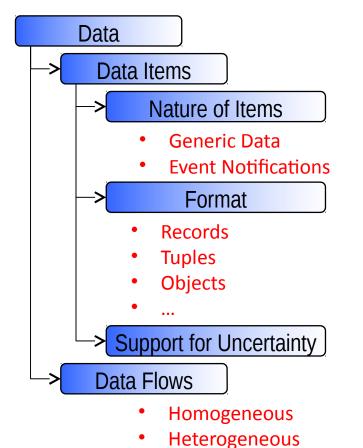
Interval time model

• What is "next" in event processing? by White et. Al

 Proposes a number of desired properties to be satisfied by the "Next" function

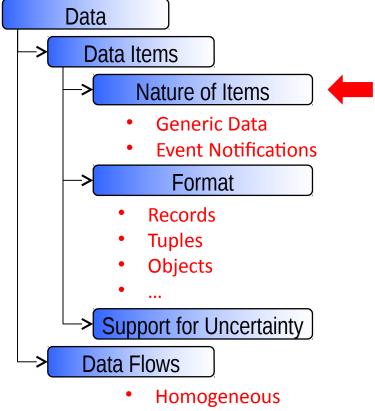
- There is one model that satisfies them all
 Complete History
- It is not sufficient to encode timestamps using a couple of values
 - Timestamps of composite events must embed the timestamps of all the events that led to their occurrence
 - Possibly, timestamps of unbounded size
 - In case of unbounded Seq

Data model



- Studies how the different systems
 - Represent single data items
 - Organize them into data flows

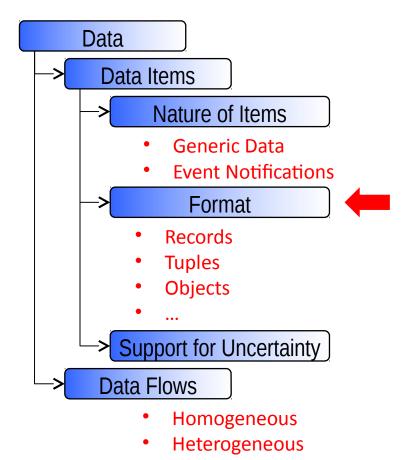
Nature of items



Heterogeneous

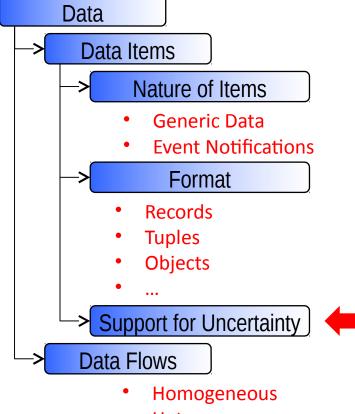
- The meaning we associate to information items
 - Generic data
 - Event notifications
- Deeply influences several other aspects of an IFP system
 - Time model !!!
 - Rule language
 - Semantics of processing

Format of items



- How information is represented
- Influences the way items are processed
 - In DSMS, the relational model requires tuples
 - In RP, streams are often typed to enable integration with the programming language type system

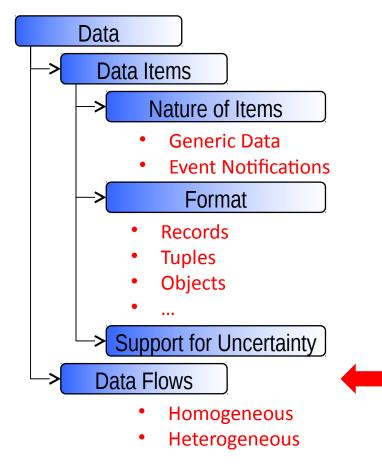
Support for uncertainty



Heterogeneous

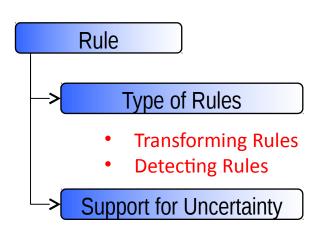
- Ability to associate a degree of uncertainty to information items
- To the content of items
 Imprecise temperature reading
- To the presence of an item (occurrence of an event)
 - Spurious RFID reading
- When present, probabilistic information is usually exploited in rules during processing

Data flows



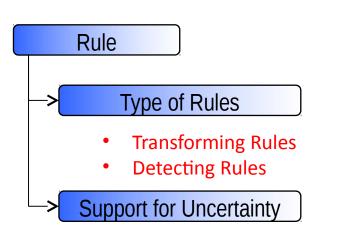
- Homogeneous
 - Each flow contains data with the same format and "type"
 - E.g. Tuples with identical structure
- Heterogeneous
 - Information flows are seen as channels connecting sources, processors, and sinks
 - Each channel may transport items with different kind and format

Rule model



- Rules are much more complex entities than data items
 - Large number of different approaches
 - Already observed in the previous slides
- We classify them into two macro classes
 - Transforming rules
 - Detecting rules

Support for uncertainty



- Two orthogonal aspects
- Support for uncertain input
 - Allows rules to deal with/reason about uncertain input data
- Support for uncertain output
 - Allows rules to associate a degree of uncertainty to the output produced

Language model

- Following the rule model, we define two classes of languages:
 - Transforming languages
 - Declarative languages
 - Dataflow languages
 - Functional and/or imperative operators
 - Detecting languages
 - Pattern-based

Declarative languages

- Specify operations to transform input flows to produce one or more output flows
- Two main flavors
 - Relational (DSMS)
 - Select, join, aggregate operators
 - Windowing operators to select portions of the stream
 - Functional (RP)
 - Map, reduce, filter
 - Rare use of windowing operators

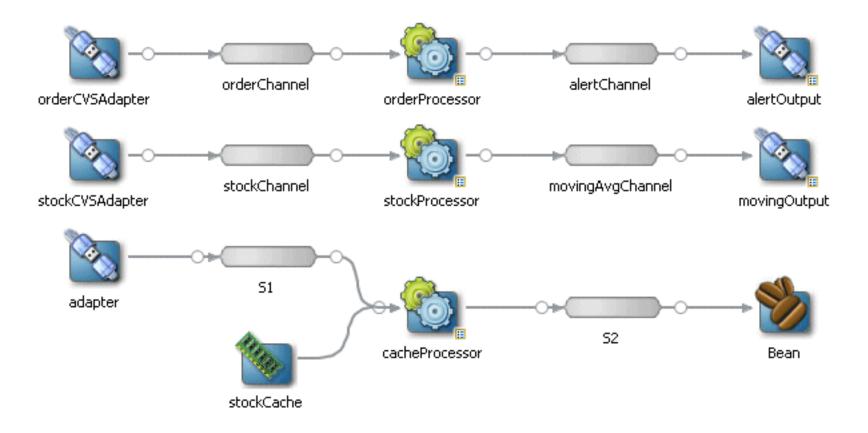
Dataflow languages

- Specify the desired execution flow
 - Starting from primitive operators
 - Example: Oracle CEP, Storm
- Can be user-defined

• Usually adopt a graphical notation

Imperative languages

Oracle CEP



Declarative languages

• Specify a firing condition as a pattern

- Select a portion of incoming flows through
 - Logic operators
 - Content / timing constraints

 The action uses selected items to produce new knowledge

Detecting Languages

TESLA / T-Rex

ACTION

Define Fire(area: string, measuredTemp: double)
From Smoke(area=\$a) and last
Temp(area=\$a and value>45)
within 5 min. from Smoke
Where area=Smoke.area and
measuredTemp=Temp.value

CONDITION (PATTERN)