
Dr.-Ing. Michael Eichberg

Concurrent Programming
(Overview of the Java concurrency model and its relationship to other models...)

(some slides are based on slides by Andy Wellings)

Concurrency

Processes vs. Threads
(Concurrency Models)

Operating System

Threads Fibres

Processes

thread library

2

• Process as an execution environment (address space, thread synchronization and communication resources, higher-level resources such as open files
and windows...). (Expensive to create.)

• A Thread is an operating-system level abstraction of an activity. Multiple threads can share the same process. (State associated with a thread: processor
register, priority and execution state,...)

• Thread creation is much cheaper than process creation (around 10x)

Concurrency

Java Supports Threads - Concurrency Models

‣ Threads execute within a single JVM.
‣ Types of Threads:
‣Green threads adopt the thread library approach  

(Green threads are invisible to the OS.)
‣Native threads map a single Java thread to an OS thread 

On a multiprocessor system, native threads are required to get true
parallelism (but this is still implementation dependent).

3

[Wikipedia:] In computer science, a fiber is a particularly lightweight thread of execution.
Like threads, fibers share address space. However, fibers use co-operative multitasking while threads use pre-emptive multitasking.
Today, green threads(aka Fibers) are only relevant when considering embedded devices.

Concurrency

Concurrency Models -
Communication and Synchronization

‣Communication by means of:
‣ shared-variables (Java, C#, …)
‣message passing (Erlang, occam,

process calculi,…)
‣Many different models, a popular

one is a monitor 
A monitor can be considered as an
object where each of its operation
executes in mutual exclusion.

State

Lock

procedural

interface

Monitor

4

Java Monitors are not to be confused with traditional Monitors.

A traditional monitor is comparable to a Java class without static members that has only private fields and where all instance methods (non-private) are
synchronized.

However, in Java we always only have one anonymous condition variable while a traditional monitor can have multiple condition variables! Furthermore,
synchronization needs to be done explicitly.

Concurrency Models

Concurrency

Condition Synchronization

‣ ... expresses a constraint on the ordering of execution of operations,
‣ e.g., data cannot be removed from a buffer until data has been placed in

the buffer.

5

Concurrency Models

Concurrency

Condition Synchronization

‣ “Traditional Monitors” provide multiple condition variables with two
operations which can be called when the lock is held:
‣wait; an unconditional suspension of the calling thread (the thread is

placed on a queue associated with the condition variable)
‣notify; one thread is taken from the queue associated with the respect

condition variable and is re-scheduled for execution (it must reclaim the
lock first)
‣notifyAll; all suspended threads are re-scheduled 

6

Concurrency

Communication in Java Using Monitors

‣Via reading and writing to data encapsulated in shared objects protected
by (simple) monitors
‣Every object is implicitly derived from the Object class which defines a

mutual exclusion lock
‣Methods in a class can be labeled as synchronized, this means that

they can only be executed if the lock can be acquired (this happens
automatically)
‣ The lock can also be acquired via a synchronized statement which

names the object
‣A thread can wait and notify on a single anonymous condition variable

7

Java uses the synchronized keyword to indicate that only one thread at a time can be executing in this or any other synchronized method of the object
representing the monitor.

Concurrency

Communication & Synchronization

Goals:
‣ To understand synchronized methods and statements and how they

can be used with the wait and notify methods to implement simple
monitors
‣ To show how to implement the bounded buffer communication paradigm

8

Concurrency - Communication & Synchronization

Synchronized Methods

‣A mutual exclusion lock is (implicitly) associated with each object.  
The lock cannot be accessed directly by the application but is affected by:
‣ the method modifier synchronized
‣ block synchronization using the synchronized keyword
‣When a method is labeled as synchronized, access to the method can

only proceed once the system has obtained the lock
‣Hence, synchronized methods have mutually exclusive access to the

data encapsulated by the object, if that data is only accessed by other
synchronized methods
‣Non-synchronized methods do not require the lock and, therefore, can be

called at any time

9

Concurrency - Communication & Synchronization

Double-Checked Locking Idiom

public class TACDemo { 
 private static volatile TACDemo instance; 
 static TACDemo getInstance() { 
 TACDemo instance = TACDemo.instance; 
 // thread-safe double checked locking 
 if (instance == null) { 
 synchronized (TACDemo.class) {  
 instance = TACDemo.instance; 
 if (instance == null) { 
 instance = new TACDemo(); 
 TACDemo.instance = instance; 
 } 
 } 
 } 
 return instance;  
 } 
} 

10

Happens-before

Concurrency - Communication & Synchronization

Synchronized Methods

‣When a synchronized method exits, it establishes a happens-before
relationship with any subsequent invocation of a synchronized method for
the same object.
‣When the happens-before relation is established by a programmer, e.g.,

by means of synchronization, we have the guarantee that memory writes
by statement A executed by Thread TA are visible to another specific
statement B executed by Thread TB.

11

Thread.start and Thread.join also establish happens-before relations as well as field writes and reads to a volatile field.

public class SharedInteger {

private int theData;

public SharedInteger(int initialValue) {
theData = initialValue;

}

public synchronized int read() { return theData; }

public synchronized void write(int newValue) { theData = newValue; }

public synchronized void incrementBy(int by) {
theData = theData + by;

}
}

...
SharedInteger myData = new SharedInteger(42);

Concurrency - Communication & Synchronization

Example of Synchronized Methods
12

synchronization of the read and write methods is necessary to ensure that the most current value is read (forces a synchronization with the global heap/
establishes the happens-before relation!)

public class SharedInteger {
...
public int read() {

synchronized (this) {
return theData;

}
}
...

}

Concurrency - Communication & Synchronization

Synchronized Blocks

‣A mechanism where a block can be labeled as synchronized
‣ The synchronized keyword takes as a parameter an object whose lock

the system needs to obtain before it can continue
‣Synchronized methods are effectively implementable as

13

Concurrency - Communication & Synchronization

Synchronized - Warning
14

Concurrency - Communication & Synchronization

Synchronized - Warning

‣Used in its full generality, the synchronized block can undermine one of the
advantages of monitor-like mechanisms, that of encapsulating
synchronization constraints associate with an object into a single place in
the program …
‣… it is not possible to understand the synchronization associated with a

particular object by just looking at the object itself when other objects can
name that object in a synchronized statement
‣However with careful use, this facility augments the basic model and allows

more expressive synchronization constraints to be programmed

14

Concurrency - Communication & Synchronization

Accessing Synchronized Data

‣Consider a simple class which implements a two-dimensional coordinate
that is to be shared between two or more threads
‣ This class encapsulates two integers, whose values contain the x and the y

coordinates
‣Writing to a coordinate is simple, the write method can be labelled as
synchronized
‣ Furthermore, the constructor method can be assumed not to have any

synchronization constraint

15

public class SharedCoordinate {

private int x, y;

public SharedCoordinate(int initX, int initY) {
x = initX;
y = initY;

}

public synchronized void write(int newX, int newY) {
x = newX;
y = newY;

}
...

}

Concurrency - Communication & Synchronization

Example of Synchronized Methods
16

Concurrency - Communication & Synchronization

Accessing Synchronized Data
17

Ask the students what to do…

(There is an alternative: make SharedCoordinate immutable ; however, it does not work in all use cases.)

Concurrency - Communication & Synchronization

Accessing Synchronized Data

How to read the value of the coordinates?
‣ Functions in Java can only return a single value, and parameters to

methods are passed by value
‣Consequently, it is not possible to have a single read method which

returns both the x and the y values
‣ If two synchronized functions are used, readX and readY, it is possible

for the value of the coordinate to be written in between the calls to readX
and readY
‣ The result will be an inconsistent value of the coordinate

17

Ask the students what to do…

(There is an alternative: make SharedCoordinate immutable ; however, it does not work in all use cases.)

public class SharedCoordinate {

private int x, y;
...
public synchronized SharedCoordinate read() {

return new SharedCoordinate(x, y);
}

public int readX() { return x; }
public int readY() { return y; }

}

Solution Idea 1

Concurrency - Communication & Synchronization

Example of Synchronized Methods

‣Return a new coordinate object whose values of the x and y fields are
identical to the shared coordinate
‣ This new object can then be accessed without fear of it being changed:

18

Solution 1

Concurrency - Communication & Synchronization

Example of Synchronized Methods
19

Solution 1

Concurrency - Communication & Synchronization

Example of Synchronized Methods

Notes:
‣ The returned coordinate is only a snapshot of the shared coordinate,

which might be changed by another thread immediately after the read
method has returned
‣ The individual field values will be consistent
‣Once the returned coordinate has been used, it can be discarded and

made available for garbage collection
‣ If extreme efficiency is a concern, it is appropriate to try to avoid

unnecessary object creation and garbage collection

19

...
SharedCoordinate point1 = new SharedCoordinate(0,0);
synchronized (point1) {

SharedCoordinate point2 = new SharedCoordinate( 
point1.readX(),point1.readY());

}
...

Solution 2

Concurrency - Communication & Synchronization

Example of Synchronized Methods

‣Assume the client thread will use synchronized blocks to obtain atomicity :

public class SharedCoordinate {
private int x, y;
...
public int readX() { return x; }
public int readY() { return y; }

}

20

EXTERNAL SYNCHRONIZATION

(Note, the write method is already synchronized!)

Concurrency - Communication & Synchronization

Static Data

‣Static data is shared between all objects created from the class
‣ In Java, classes themselves are also objects and there is a lock

associated with the class
‣ This lock may be accessed by either labeling a static method with the
synchronized modifier or by identifying the class's object in a
synchronized block statement
‣ The latter can be obtained from the Object class associated with the

object
‣Note that this class-wide lock is not obtained when synchronizing on the

object

21

public class StaticSharedVariable {

private static int globalCounter;

public static int read() {
synchronized (StaticSharedVariable.class) {

return globalCounter;
}

}

public synchronized static void write(int I) {
globalCounter = I;

}
}

Concurrency - Communication & Synchronization

Static Data
22

Concurrency - Communication & Synchronization

Volatile

‣Static and instances fields can be declared volatile; this ensures that all
threads see consistent values (Java Memory Model)
‣A write to a volatile field happens-before every subsequent read of that

field.

23

public class StaticSharedVariable {

private static volatile int globalCounter;

public static int getCounter() {
return globalCounter;

}

public static void setCounter(int v) {
globalCounter = v;

}
}

Concurrency - Communication & Synchronization

Static Data
24

...
public final void notify();

public final void notifyAll();

public final void wait() throws InterruptedException;

public final void wait(long millis) throws InterruptedException;

public final void wait(long millis, int nanos) throws InterruptedException;
...

Waiting and Notifying

Concurrency - Communication & Synchronization

Conditional Synchronization

‣Conditional synchronization requires the methods provided in the
predefined Object class:

25

Waiting and Notifying

Concurrency - Communication & Synchronization

Conditional Synchronization

‣These methods can be used only from within methods which hold the
object lock
‣ If called without the lock, the unchecked exception
IllegalMonitorStateException is thrown
‣ The wait method always blocks the calling thread and releases the lock

associated with the object

26

Waiting and Notifying

Concurrency - Communication & Synchronization

Conditional Synchronization

Notes:
‣ The notify method wakes up one waiting thread; the one woken is not

defined by the Java language
‣ notify does not release the lock; hence the woken thread must wait until

it can obtain the lock before proceeding
‣ To wake up all waiting threads requires use of the notifyAll method
‣ If no thread is waiting, then notify and notifyAll have no effect

27

When to use notify and when to use notifyAll?

Java uses the signal-and-continue semantics for notify.

Concurrency - Communication & Synchronization

Thread Interruption

‣A waiting thread can also be awoken if it is interrupted by another thread
‣ In this case the InterruptedException is thrown (see later in the course)

28

Concurrency - Communication & Synchronization

Conditional Synchronization
using Condition Variables

‣ There are no explicit condition variables in Java
‣When a thread is awoken, it cannot assume that its condition is true, as

all threads are potentially awoken irrespective of what conditions they were
waiting on!
‣ For some algorithms this limitation is not a problem, as the conditions

under which tasks are waiting are mutually exclusive
‣ ...

29

Concurrency - Communication & Synchronization

‣Example:
‣ E.g., the bounded buffer traditionally has two condition variables:
BufferNotFull and BufferNotEmpty
‣ If a thread is waiting for one condition, no other thread can be waiting for

the other condition
‣One would expect that the thread can assume that, when it awakes, the

buffer is in the appropriate state
‣ ...(to be continued)

Conditional Synchronization
using Condition Variables

30

Given two threads it is not possible that thread A waits on BufferNotFull and thread B waits on BufferNotEmpty.

Concurrency - Communication & Synchronization

‣Example:
‣ ...(continued)
‣ This is not always the case; Java makes no guarantee that a thread

woken from a wait will gain immediate access to the lock
‣Another thread could call the put method, find that the buffer has space

and insert data into the buffer
‣When the woken thread eventually gains access to the lock, the buffer will

again be full
‣Hence, it is usually essential for threads to re-evaluate their guards

Conditional Synchronization
using Condition Variables

31

Given two threads it is not possible that thread A waits on BufferNotFull and thread B waits on BufferNotEmpty

public class BoundedBuffer {

private final int buffer[];
private int first;
private int last;
private int numberInBuffer = 0;
private final int size;

public BoundedBuffer(int length) {
size = length;
buffer = new int[size];
last = 0;
first = 0;

};
...

}

Concurrency - Communication & Synchronization

Bounded Buffer
32

public class BoundedBuffer {
...
public synchronized void put(int item) throws InterruptedException {

while (numberInBuffer == size)
wait();

last = (last + 1) % size; // % is modulus
numberInBuffer++;
buffer[last] = item;
notifyAll();

};

public synchronized int get() throws InterruptedException {
while (numberInBuffer == 0)

wait();
first = (first + 1) % size; // % is modulus
numberInBuffer--;
notifyAll();
return buffer[first];

}
}

Concurrency - Communication & Synchronization

Bounded Buffer
33

Concurrency - Why do we need to wait in a loop? 34

Executing Thread method called State of Thread “a”

a bb.put(…) buffer is full; a has to wait

b bb.get()
bb’s notifyAll() method is called; 

a is awoken

b bb.put(…) buffer is full; a is (still) ready

a bb.put(…) is continued buffer is full; a has to wait (again)

BoundedBuffer bb = new BoundedBuffer(1); bb.put(new Object()); // <= buffer is full!
…
Thread a = new Thread(new Runnable(){ public void run(){ … bb.put(new Object());… }}
Thread b = new Thread(new Runnable(){ public void run(){
 …
 bb.get();
 …
 bb.put(new Object()) ; }}
a.start(); b.start();

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

1
g1:bb.get()
g2:bb.get(), p1:bb.put(), p2:bb.put()  empty {g2,p1,p2} {g1}

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

1
g1:bb.get()
g2:bb.get(), p1:bb.put(), p2:bb.put()  empty {g2,p1,p2} {g1}

2 g2:bb.get()  empty {p1,p2} {g1,g2}

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

1
g1:bb.get()
g2:bb.get(), p1:bb.put(), p2:bb.put()  empty {g2,p1,p2} {g1}

2 g2:bb.get()  empty {p1,p2} {g1,g2}

3 p1:bb.put()  empty " not empty {p2,g1} {g2}

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

scheduled

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

1
g1:bb.get()
g2:bb.get(), p1:bb.put(), p2:bb.put()  empty {g2,p1,p2} {g1}

2 g2:bb.get()  empty {p1,p2} {g1,g2}

3 p1:bb.put()  empty " not empty {p2,g1} {g2}

4 p2:bb.put()  not empty {g1} {g2,p2}

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

scheduled

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

1
g1:bb.get()
g2:bb.get(), p1:bb.put(), p2:bb.put()  empty {g2,p1,p2} {g1}

2 g2:bb.get()  empty {p1,p2} {g1,g2}

3 p1:bb.put()  empty " not empty {p2,g1} {g2}

4 p2:bb.put()  not empty {g1} {g2,p2}

5 g1:bb.get()  not empty " empty {g2} {p2}

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

scheduled

scheduled

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Concurrency - Why do we need to call “notifyAll” (and not notify)? 35

(concurrent) actions

(“bold” = thread with the lock)

state of the buffer before
and after the action

bb’s ready queue

(Threads waiting for the lock.)

bb’s wait set

(Sleeping Threads.)

1
g1:bb.get()
g2:bb.get(), p1:bb.put(), p2:bb.put()  empty {g2,p1,p2} {g1}

2 g2:bb.get()  empty {p1,p2} {g1,g2}

3 p1:bb.put()  empty " not empty {p2,g1} {g2}

4 p2:bb.put()  not empty {g1} {g2,p2}

5 g1:bb.get()  not empty " empty {g2} {p2}

6 g2:bb.get() empty ∅ {g2,p2}

BoundedBuffer bb = new BoundedBuffer(1);
…
Thread g1,g2 = new Thread(){ public void run(){ bb.get(); } };
Thread p1,p2 = new Thread(){ public void run(){ bb.put(new Object()); } };
g1.start(); g2.start(); p1.start(); p2.start();

✗

scheduled

scheduled

If notify() is used instead of notifyAll().

In “bb’s ready queue” are all threads that need to acquire a lock.
In “bb’s wait set” are all waiting threads; i.e. threads that sleep and which need to be notified.
Ask the student when / where the problem occured.
The “problem” occurs in the fourth line when the scheduler chooses g2 instead of p2.

Summary

Concurrency - Communication & Synchronization

Synchronization and Communication
36

Deadlock - the Threads are waiting on each other because two or more threads already hold resources and waiting for other resources (also hold by
threads) to be released...

Livelock - a Thread is executing, but the application makes no forward progress... (e.g. when two people meet in a narrow corridor, and each tries to be
polite by moving aside to let the other pass, but they end up swaying from side to side without making any progress because they always both move the
same way at the same time.)

Summary

Concurrency - Communication & Synchronization

Synchronization and Communication

‣Errors in communication and synchronization cause working programs to
suddenly suffer from deadlock or livelock
‣ The Java model revolves around controlled access to shared data using a

monitor-like facility
‣ The monitor is represented as an object with synchronized methods and

statements providing mutual exclusion
‣Condition synchronization is given by the wait and notify method
‣ True monitor condition variables are not directly supported by the language

and have to be programmed explicitly

36

Deadlock - the Threads are waiting on each other because two or more threads already hold resources and waiting for other resources (also hold by
threads) to be released...

Livelock - a Thread is executing, but the application makes no forward progress... (e.g. when two people meet in a narrow corridor, and each tries to be
polite by moving aside to let the other pass, but they end up swaying from side to side without making any progress because they always both move the
same way at the same time.)

Concurrency

Concurrency in Java

‣ Java has a predefined class java.lang.Thread which provides the
mechanism by which threads are created
‣However to avoid all threads having to be child classes of Thread, it also

uses a standard interface:  
public interface Runnable {  
void run();  

}

‣Hence, any class which wishes to express concurrent execution must
implement this interface and provide the run method
‣ Threads do not begin their execution until the start method in the
Thread class is called

37

Concurrency

Threads in Java

run()

Runnable

run()

MyRunnable

Thread(Runnable: r)

run()

start()

Thread

run()

MyThread

«method»

while(true) do_something;

38

KEEP THIS SLIDE WHILE MOVING ON!

public class Thread implements Runnable {

public Thread() {...}

public Thread(Runnable target) {...}

public Thread(ThreadGroup group, Runnable target) {...}

public Thread(ThreadGroup group, Runnable target, String name,long stackSize) {...}

...

public synchronized void start() {...}

public void run() {...}

...
}

Concurrency

java.lang.Thread
39

Concurrency

Thread Creation

Two possibilities:
‣Extend the Thread class and override the run method, or...
‣Create an object which implements the Runnable interface and pass it to

a Thread object via one of Thread’s constructors.

40

public class Thread implements Runnable {

 /**
 * Returns a reference to the currently executing thread object.
 *
 * @return the currently executing thread.
 */
 public static native Thread currentThread();
}

Identity of the currently running thread.

Concurrency

Thread Identification Using “currentThread()”

‣ Thread.currentThread() has a static modifier, which means that
there is only one method for all instances of Thread objects
‣ The method can always be called using the Thread class

41

Concurrency

Thread Termination

A Thread terminates...
‣when it completes execution of its run method either normally or as the

result of an unhandled exception
‣ via a call to its stop method — the run method is stopped and the thread

class cleans up before terminating the thread (releases locks and executes
any finally clauses)
‣ The thread object is now eligible for garbage collection
‣Stop is inherently unsafe as it releases locks on objects and can leave

those objects in inconsistent states; the method is now deprecated
and should not be used

‣by its destroy method being called — destroy terminates the thread
without any cleanup (not provided by many JVMs, also deprecated)

42

Concurrency

Types of Threads

Java threads can be of two types: user threads or daemon threads
‣Daemon threads are those threads which provide general services and

typically never terminate
‣When all user threads have terminated, daemon threads can also be

terminated and the main program terminates
‣ The setDaemon method must be called before the thread is started

43

Inter-thread Communication

Concurrency

Joining Threads

‣One thread can wait (with or without a timeout) for another thread (the
target) to terminate by issuing the join method call on the target's thread
object
‣ The isAlive method allows a thread to determine if the target thread has

terminated

44

public class Thread implements Runnable {
...

public final native boolean isAlive() {...}

public final native void join() throws InterruptedException {...}

public final native void join(long millis) throws InterruptedException {...}

public final native void join(long millis, int nanos)  
throws InterruptedException {...}

...
}

Inter-thread Communication

Concurrency

java.lang.Thread
45

Concurrency

Java Thread States

Non-Existing

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

create thread

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

Executable

create thread

start

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

Executable

Blocked

create thread

start

wait,
 joi

n

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

Executable

Blocked

create thread

start

wait,
 joi

n
no

tify
, n

otfi
yA

ll

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

Executable

DeadBlocked

create thread

start

run method 

exits / destroywait,
 joi

n
no

tify
, n

otfi
yA

ll

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

Executable

DeadBlocked

create thread

start

run method 

exits / destroy

garbage collected

wait,
 joi

n
no

tify
, n

otfi
yA

ll

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Concurrency

Java Thread States

Non-Existing

New

Executable

DeadBlocked

create thread

start
destroy

destroy

run method 

exits / destroy

garbage collected

wait,
 joi

n
no

tify
, n

otfi
yA

ll

46

http://download.oracle.com/javase/6/docs/api/java/lang/Thread.State.html

KEEP THIS SLIDE

Summary

Concurrency

Java Thread States

‣ The thread is created when an object derived from the Thread class is
created
‣At this point, the thread is not executable — Java calls this the new state
‣Once the start method has been called, the thread becomes eligible for

execution by the scheduler
‣ If the thread calls the wait method in an object, or calls the join method

on another thread object, the thread becomes blocked and is no longer
eligible for execution
‣ The thread becomes executable as a result of an associated notify

method being called by another thread, or if the thread with which it has
requested a join, becomes dead

47

eligible = geeignet

Summary

Concurrency

Java Thread States

‣A thread enters the dead state, either as a result of the run method exiting
(normally or as a result of an unhandled exception) or because its destroy
method has been called
‣ In the latter case, the thread is abruptly moved to the dead state and does

not have the opportunity to execute any finally clauses associated with its
execution; it may leave other objects locked

48

Concurrency

Synchronization and Communication

Java 1.5 Concurrency API

49

Support for general-purpose concurrent programming.

Concurrency

Java 1.5 Concurrency Utilities
50

Support for general-purpose concurrent programming.

Concurrency

Java 1.5 Concurrency Utilities

‣java.util.concurrent  
Provides various classes to support common concurrent programming
paradigms, e.g., support for various queuing policies such as bounded
buffers, sets and maps, thread pools etc.
‣java.util.concurrent.atomic  

Provides support for lock-free thread-safe programming on simple variables
such as atomic integers, atomic booleans, etc.
‣java.util.concurrent.locks  

Provides a framework for various locking algorithms that augment the Java
language mechanisms, e.g., read -write locks and condition variables.

50

Support for general-purpose concurrent programming.

Concurrency

Java 1.5 Locks

Lock implementations provide more extensive and more sophisticated
locking operations than can be obtained using synchronized methods and
statements.
‣ For example, some locks may allow concurrent access to a shared

resource, such as the read lock of a ReadWriteLock
‣ The use of synchronized methods or statements provides access to the

implicit monitor lock associated with every object, but forces all lock
acquisition and release to occur in a block-structured way: when
multiple locks are acquired they must be released in the opposite order,
and all locks must be released in the same lexical scope in which they were
acquired

51

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/ReadWriteLock.html

Support for general-purpose concurrent programming.

Concurrency

Java 1.5 Locks

‣ “hand-over-hand” or “chain locking” require more flexible locks 
You acquire the lock of node A, then node B, then release A and acquire C,
then release B and acquire D and so on.
‣With this increased flexibility comes additional responsibility:  

The absence of block-structured locking removes the automatic release of
locks that occurs with synchronized methods and statements.

52

Support for general-purpose concurrent programming.

Concurrency

Java 1.5 Locks

‣Additional functionality over the use of synchronized methods and
statements: non-blocking attempt to acquire a lock (tryLock()), an
attempt to acquire the lock that can be interrupted
(lockInterruptibly()), and an attempt to acquire the lock that can
timeout (tryLock(long, TimeUnit))
‣A Lock class can also provide behavior and semantics that is quite different

from that of the implicit monitor lock, such as guaranteed ordering, non-
reentrant usage, or deadlock detection

53

Reentrant = “wieder einsprungfähig” bzw. “eintrittsinvariant”; if the lock is already hold it is possible to acquire it again (Java Monitors are reentrant).

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Lock.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Lock.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Lock.html

public interface Lock {

/** Wait for the lock to be acquired. */
public void lock();

/** Create a new condition variable for use with the Lock. */
public Condition newCondition();

public void unlock();
}

java.util.concurrent.locks

Concurrency

Java 1.5 Locks
54

Support for general-purpose concurrent programming.

Concurrency

Java 1.5 Conditions (w.r.t. Locks)

‣A condition factors out the Object monitor methods (wait, notify and
notifyAll) into distinct objects to give the effect of having multiple wait-
sets per object, by combining them with the use of arbitrary Lock
implementations
‣Where a Lock replaces the use of synchronized methods and statements,

a Condition replaces the use of the Object monitor methods
‣A Condition instance is intrinsically bound to a lock 

To obtain a Condition instance for a particular Lock instance use its
newCondition() method.

55

public interface Condition {

/**
 * Atomically releases the associated lock and causes the current thread to
 * wait.
 */
public void await() throws InterruptedException;

/** Wake up one waiting thread. */
public void signal();

/** Wake up all waiting threads. */
public void signalAll();

}

java.util.concurrent.locks

Concurrency

Java 1.5 Locks
56

public class ReentrantLock implements Lock {

public ReentrantLock() {...}

public void lock() {...}

public void unlock() {...}

/**
 * Create a new condition variable and associated it with this lock object.
 */
public Condition newCondition() {...}

}

java.util.concurrent.locks

Concurrency

Java 1.5 Locks
57

Reentrant = “wieder einsprungsfähig”; if the lock is already hold it is possible to acquire it again (Java Monitors are reentrant).

public class BoundedBuffer<T> {

private final T buffer[];

private int first;

private int last;

private int numberInBuffer;

private final int size;

private final Lock lock = new ReentrantLock();

private final Condition notFull = lock.newCondition();

private final Condition notEmpty = lock.newCondition();

...
}

Concurrency

Generic Bounded Buffer - State
58

public class BoundedBuffer<T> {

...

public BoundedBuffer(int length) {

size = length;
buffer = (T[]) new Object[size];
last = 0;
first = 0;
numberInBuffer = 0;

}

...
}

Concurrency

Generic Bounded Buffer - Constructor
59

public class BoundedBuffer<T> {

...
public void put(T item) throws InterruptedException {

lock.lock();
try {

while (numberInBuffer == size) { notFull.await(); }
last = (last + 1) % size;
numberInBuffer++;
buffer[last] = item;
notEmpty.signal();

} finally {
lock.unlock();

}
}
...

}

Concurrency

Generic Bounded Buffer -
Putting Data in the Buffer

60

ASK THE STUDENTS WHY WE DO HAVE TO WAIT IN A LOOP?

ASK IF THIS SOLUTION WILL HAVE A BETTER PERFORMANCE

public class BoundedBuffer<T> {

...
public T get() ... {

lock.lock();
try {

while (numberInBuffer == 0)  
{ notEmpty.await(); }

first = (first + 1) % size;
numberInBuffer--;
notFull.signal();
return buffer[first];

} finally {
lock.unlock();

}
}

}

Concurrency

Comparison of Both Bounded Buffer Implementations
Getting Data

61

public class BoundedBuffer<T> {
...

public synchronized T get() ... {

while (numberInBuffer == 0)
wait();

first = (first + 1) % size;
numberInBuffer--;

notifyAll();
return buffer[first];

}
}

ASK the students if they know what happens if a return statement is defined within a try block that has a finally block.

Concurrency

Best Practices

‣Synchronized code should be kept as short as possible
‣Nested monitor calls:
‣ ... should be avoided because the outer lock is not released when

the inner monitor waits (to release the lock causes other problems).
‣… can easily lead to deadlock occurring
‣… (continued on the next slide.)

62

Concurrency

Best Practices

‣Nested monitor calls:
‣… (continues the previous slide.)
‣ It is not always obvious when a nested monitor call is being made:
‣ ... methods not labelled as synchronized can still contain a
synchronized statement
‣ ... methods in a class not labelled as synchronized can be overridden

with a synchronized method; method calls which start off as being
un-synchronized may be used with a synchronized subclass
‣ ... methods called via interfaces cannot be labelled as synchronized

63

What does thread safety mean?

Concurrency

Thread Safety

Prerequisites:

64

Ask the students what Thread Safety is.

What does thread safety mean?

Concurrency

Thread Safety

Prerequisites:
‣ For a class to be thread-safe, it must behave correctly in a single-threaded

environment

64

Ask the students what Thread Safety is.

What does thread safety mean?

Concurrency

Thread Safety

Prerequisites:
‣ For a class to be thread-safe, it must behave correctly in a single-threaded

environment
‣ If a class is correctly implemented, no sequence of operations (reads or

writes of non-private fields and calls to non-private methods) on objects of
that class should be able to:

64

Ask the students what Thread Safety is.

What does thread safety mean?

Concurrency

Thread Safety

Prerequisites:
‣ For a class to be thread-safe, it must behave correctly in a single-threaded

environment
‣ If a class is correctly implemented, no sequence of operations (reads or

writes of non-private fields and calls to non-private methods) on objects of
that class should be able to:
‣ put the object into an invalid state,

64

Ask the students what Thread Safety is.

What does thread safety mean?

Concurrency

Thread Safety

Prerequisites:
‣ For a class to be thread-safe, it must behave correctly in a single-threaded

environment
‣ If a class is correctly implemented, no sequence of operations (reads or

writes of non-private fields and calls to non-private methods) on objects of
that class should be able to:
‣ put the object into an invalid state,
‣ observe the object to be in an invalid state, or

64

Ask the students what Thread Safety is.

What does thread safety mean?

Concurrency

Thread Safety

Prerequisites:
‣ For a class to be thread-safe, it must behave correctly in a single-threaded

environment
‣ If a class is correctly implemented, no sequence of operations (reads or

writes of non-private fields and calls to non-private methods) on objects of
that class should be able to:
‣ put the object into an invalid state,
‣ observe the object to be in an invalid state, or
‣ violate any of the class's invariants, preconditions, or postconditions.

64

Ask the students what Thread Safety is.

What does thread safety mean?

Concurrency

Thread Safety

‣ For a class to be thread-safe, it must continue to behave correctly, in the
sense described on the previous slide,...
‣when accessed from multiple threads regardless of the scheduling or

interleaving of the execution of those threads by the runtime environment,
‣without any additional synchronization on the part of the calling code

The effect is that operations on a thread-
safe object will appear to all threads to

occur in a fixed, globally consistent order.

65

Concurrency

Bloch’s Thread Safety Levels

‣ Immutable 
Objects are constant and cannot be changed
‣Thread-safe 

Objects are mutable, but they can be used safely in a concurrent
environment as the methods are appropriately synchronized
‣Conditionally thread-safe 

Conditionally thread-safe classes are those for which each individual
operation may be thread-safe, but certain sequences of operations may
require external synchronization  
E.g.: traversing an Iterator returned from Hashtable or Vector. The
fail-fast iterators returned by these classes assume that the underlying
collection will not be mutated while the iterator traversal is in progress.
‣ ...

66

Immutable ~ e.g. java.lang.String
Thread-safe ~ e.g. an object that encapsulates some simple state such as a “SynchronizedCounter”
Conditionally thread-safe ~ Vector, HashTable, etc. are not Thread-safe they are conditionally thread safe w.r.t. this definition)

Concurrency

Bloch’s Thread Safety Levels

‣ ...
‣Thread compatible
‣ Instances of the class provide no synchronization
‣However, instances of the class can be safely used in a concurrent

environment, if the caller provides the synchronization by surrounding
each method (or sequence of method calls) with the appropriate lock

‣ ...

67

Always consider the thread safety of your class during the initial design and document it (and also document the locks that need to be acquired to achieve
the next Thread Safety level)!

Concurrency

Bloch’s Thread Safety Levels

‣ ...
‣Thread-hostile
‣ Instances of the class should not be used in a concurrent environment

even if the caller provides external synchronization
‣ Typically a thread hostile class is accessing static data or the external

environment
‣An example of a thread-hostile class would be one that calls
System.setOut()

68

Always consider the thread safety of your class during the initial design and document it (and also document the locks that need to be acquired to achieve
the next Thread Safety level)!

http://www.50001.com/language/javaside/lec/java_ibm/%BE%B2%B7%B9%B5%E5%20%BA%B8%BE%C8%20(%BF
%B5%B9%AE).htm

Concurrency

recommended reading (a very concise summary)

Bloch’s Thread Safety Levels
69

Always consider the thread safety of you class during the initial design and document it!

to get started: http://www.ibm.com/developerworks/library/j-jtp04186/

Concurrency

Further Information

Nonblocking Algorithms
70

