Geo-Distributed Big
Data Processing

Patrick Eugster

Outline

Big data background
Geo-distribution motivation
Geo-distributed tasks
Geo-distributed workflows

Conclusions and outlook

Outline

- Big data background
Geo-distribution motivation
Geo-distributed tasks
Geo-distributed workflows

Conclusions and outlook

Big Data

* Large datasets ranging from hundreds of GBs to
nundreds of TBs (for most users) and even PBs for
arge corporations [Wikipedia]

e Often GB range [Schwarzkopf et al.;HotCloud’12]

* Too large for traditional relational database tools
and single nodes to handle

* Processed using data-parallel software running
tens, hundreds, even thousands of computers

Big Data - Why ?

 We need it

* More users connected to the Internet: “Everyone on earth will be
connected to the Internet by 2020" [E. Schmidt’13]

e We want it

e Applications use large datasets, e.g., for operation, monitoring,
auditing, knowledge extraction

* Because we can
« Large amounts of cheap “cloud” storage available: “Amazon S3

contains over 449 billion objects and during peak time,
processes more than 290K requests per second’ [AWS blog’11]

Processing Big Data

* MapReduce (MR) popularized by [Dean and Ghemawat;OSDI’'04]

* Inspired by functional programming

* Consists of two phases

* map - takes input records and outputs sets of <key,
value> palrs

e reduce - handles set of values for given keys and emits
sets of valueS

* Open source Apache Hadoop

* HDFS distributed file slgstem inspired by Google’s GFS
|[Ghemawat et al.;SOS

Worktlow Programming

 Many “high-level languages” proposed, e.g.,
* Pig Latin [Olston et al.;SIGMOD’08]

* (Mostly) declarative untyped scripting language

* Open source Apache Pig
_
» Flume Java [Chambers et al.;PLDI'10] | &
e Java library =
» Open source Apache Crunch [o J
¢ Maﬂy Complle tO MR C] MapReduce boundary

:] Logical operation

Pig Latin Example

“Word count”

input lines = LOAD ‘input file’ AS (line:chararray);
words = FOREACH input lines GENERATE FLATTEN (TOKENIZE (line))

AS word;
word groups = GROUP words BY word;
word count = FOREACH word groups GENERATE group, COUNT (words);

STORE word count INTO ’'output file’;

“Yahoo estimates that between 40% and 60% of its Hadoop workloads
are generated from Pig [...] scripts. With 100,000 CPUs at Yahoo and
roughly 50% running Hadoop, that's a lot|[...]” [IBM DeveloperWorks’12]

Pig Latin Example

input lines
words = FOR

AS word
word groups

word count T (words)
STORE word

“Yahoo esti workloads
are generate 1 ahoo and
roughly 50% rWorks’12]

SAY WORD COUNT" ONEMORE

TIME memegenerator.net

Outline

Big data background

- Geo-distribution motivation

Geo-distributed tasks
Geo-distributed workflows

Conclusions and outlook

Geo-Distributed Big Data

Many large datasets geo-distributed, i.e., split across
sites

o Stored near resp. sources, frequently accessing entities

« Gathered and stored by different (sub-)orgamzaﬂons
yet shared towards a common goal

~ Cloud N

 E.g., US census, Google “buckets” m j

 Replicated across datacenters for avallab|||ty | . \
incompletely to limit the overhead of updates @ 2

Geo-Distributed Big Data

 Many analysis tasks involve several datasets,
which may be distributed

* Legal constraints may confine certain datasets to
specific locations

* The “cloud” is not a single datacenter

» Inter-DC latency # intra-DC latency &

Concrete Scenario

» Global web-based service provider
e Serve customers from close-by datacenters
 "Regional” customer bases
* Run analyses across all regions

 E.g., average age of customers buying
product x

GD in current Toolchain

 Hadoop

« Assumes uniform latencies
» Reducer placement based on resource availability

e Data must be in one HDFS instance or S3 bucket

+ HDFS
* Single point of management (namenode)

* Performs poorly with high and/or inconsistent latencies

« Pig Latin, Flume Java et al.

* Inherit weaknesses of underlying systems

* No support for expressing distribution

Potential for Improvement

« (Conjecture: poor execution choices result in high costs/delays

 E.g., US Census 2000 data (121 GB), 2 Amazon EC2 datacenters,
MapReduce cluster of 10 nodes each

e Two tasks (MR jobs) (1) filter records (2) group records
e Associative: can execute on subsets of data and then aggregate

M Copy WMFilterGroupCopy [FilterCopy B Copy MEFilterGroupCopy MFilterCopy

Cost (9)
D
Time (hours)

121 GB 61 GB 121 GB 61 GB

State of the Art

GD storage: Many systems, e.g., [LIoyd et al.;SOSP’11], [Sovran et
al.;.SOSP’11], [Cho&Aguilera;ATC’12],[Sciasica&Pedone;DSN’13],
[Zhang et al.;SOSP’13], consider GD data reads&writes.

GD data location: Volley [Agraval et al.;NSDI'10] or [Tran et
al.;ATC'11] migrate GD big data based on application needs.

GD computation: HOG [Weitzel et al.;MTAGS’12] modifies Hadoop
for Open Science Grid. Focus on site failures, not performance. G-
Hadoop [Wanga et al.;Future Gen. Comp. Systems’13] similar.

(G)D programming: Flink [Ewen et al.;PVLDB’12], Presto
[Venkataraman et al.;HotCloud’12], Spark [Zaharia et al.;NSDI'12]
support distributed datastructures but still in single datacenter.

Outline

Big data background

Geo-distribution motivation

- Geo-distributed tasks

Geo-distributed workflows

Conclusions and outlook

GD Tasks
[Jayalath&Eugster;IEEE TC'14]

» Dataset / distributed across n datacenters (DC; to DC,,), each has
execution cluster

* Sequence of mtasks T to T,, (cf. transducers)

DCi - datacenter li - sub-dataset Xi - EXS J&‘gp T - Task

D C1 D 02 D CS D Cn

Execution &
order §

Problem Statement

* How to efficiently perform a task sequence on a GD dataset?

e Several solutions varying by consolidation point, e.g., MR:

* Copy all data to 1 datacenter, perform job

* Perform mapping in respective datacenters, allocate all
reducers in 1 datacenter

« Perform mapping and reducing in respective datacenters,
aggregate subsequently (assuming “associativity”)

 Combinations, e.g., consolidate input from 2 of 3 datacenters,
perform mapping individually, then reducing in 1 datacenter

Data Transformation Graphs
(DTGs)

A node - distribution of data and the task execution progress

Weight of an edge - cost (monetary) or time for performing a
task or a copy operation

Each path from a starting node to an end node is a possible
execution path

A shortest path calculation algorithm is used to determine
the optimal path

Optimal with respect to a given partition distribution and
other parameter values

DTGs by Example

* 3 datacenters) 1 |npUt 21=,2,3> E;,Z,S> 5;2,3>B1=,1,3>E1=,3,3> z1=,2,1> S1=,2,2>2;3,3>|<=1,1,1>iz,2,2>
partition in each, 1 MR o - f
job (2 tasks - map and 0 O @21\
reduce) \ \‘ﬁ;‘é

e 3 stages - stage | stage =

contains all nodes with
exactly /tasks executed

e “Direct” vs “indirect” MR

stage =

e |ntermediate data 2
stored locally

Sequences

DTG for each job

« Each node in
stage 2 of DTG of
MR job i merged
with corresponding
node in stage 0 of
MR job i+1 DTG

A=<1,2,3> B=<2,2,3> C=<3,2,3>

= e
<o—?\ég

(@

\333

Sampling and Extrapolation

* Determining edge weights

e EXxecute each task on data samples in all execution
clusters (in parallel), develop functions to determine
execution time and output size

* (Not sampling all paths)

e Extrapolation used to predict execution time and
output size for large amounts of data

« Users can manually specify functions

Determining Edge Weights

Example DTG and functions

Wy=W/B, |, Wo="Cy

stage O

Wq=W/B | 5, Wo="C 5

it
wy=nicw) W,=M'(2"w)

W, =MR'(2"w) w, =M w)
W1=MRY{¥ Mt iongryeyr
W2=2*Mt(q,)*X*K () Wo=M'(2*W)*X*K

W2=2*MRY(W))*X*K

Wo=MR(2W) XK Wo=M'(2"W)*X*K

stage 1

=y

By 5, Wo=W"Cy @ W1=m W, =MR'(2"w)
) Wo=MR(2"W)*X*K

Wy=R'(w)) w,=Rlew) Wy=R'@W))
W,=2 Rl XK W,=Rl2"w) XK W,=Rl(2w |)*X*K

stage 2
Wy =W,/B| 5 +Al2"W,)
Wo=W,"C) 5 + A‘(2*‘P2)*X*K
Wy=W,/B, | + A‘(z*lpz)
W=
To next job

* t % * *
5'Cy 1 + AW XK

W1 - Time
W2 - Cost

lI’l:Md(‘P)

w2=M Rd (‘P)

X1=X2=X

G-MR

« Java framework implementing DTGs and corresponding
algorithms
e Extends Apache Hadoop

e Java annotations for associativity, functions

e Tested in Amazon EC2 with up to 1 TB of data distributed
across 4 datacenters

Ve

/

DC Job
config config

GroupManager + DTG algorithm

JobManager

Copy .
Hadoop I Manager I AggregationManager

1 w 9
_ A A

Evaluation Setup

o Up to 4 EC2 datacenters located in US East Coast, US West Coast,
Europe and, Asia

10 large EC2 nodes (7.5 GB of memory, 4 EC2 compute units) in
each datacenter

« Nodes leased at $0.34 per hour, data transfer $0.1 per GB

Datasets Task sequences
Dataset GBs Description Job Description
CENSUSData 121 Year 2000 US Census CENSUSPROCESSOR Filters and groups CENSUSData.
EDUData 5 University Website crawl WORDCOUNT Counts the number of occurences of words in EDUData
WEATHERData 20 Weather measurements MEDIANWEATHER Computes the median of a record in WEATHERData
PLANTData 10 Properties of Iris plant KNN Type of each plant record in PLANTData
HADOOPData 100 Logs of Yahoo! Hadoop cluster ETL Extracts and performs a cross product on HADOOPData

NGRAMData 300 Google Books Ngrams NGRAM All combinations of last two words of 4 grams

Evaluation

» Two datacenters (DC+ and DC»)
» Different execution paths

 CopyAndExecute - copy all data to a single datacenter prior to
execution

* ExecuteAndCopy - execute all tasks prior to copying

* PartialCopy - balance the partitions in the middle

Cost (%)

0.67

20

Monetary Cost

WORDCOUNT

B CopyAndExecute
Bl Optimal

40 60
% of input in DC,

Optimal - ExecuteAndCopy

80

NGRAM

207
A CopyAndExecute C ExecuteAndCopy

151 B Optimal D PartialCopy

Cost ($)

0 B C D

Execution Path

Optimal - copy data after first MR job

Execution Time (sec)

Execution Time

WORDCOUNT
3607 B CopyAndExecute
3201 B Optimal
280+t
240+
200+
160+t
120O 20 40 60 80

% of input in DC,

Optimal - ExecuteAndCopy

NGRAM

00)

A CopyAndExecute C ExecuteAndCopy
B Optimal D PartialCopy

(@)

N

=)

Execution Time (hours)
N

A B C D

Execution Path

o

Optimal - copy data after first MR job

Execution Time (sec)

120

w)
N
o

No
(@0
o

N
-~
o

200t

160}

Prediction Accuracy

—0 Copy Predicted
A--A CopyActual

B-—- Multi Predicted

X ¥e-—X Multi Actual
N

. A
\\\'\ 5
\ _ 27 o
A *
R ’ _____ ..»/,
...... o
. .*

0 10 20 30 40 50 60 70 80 90

0.2

- @—@ Copy Predicted
A--A Copy Actual

B--l Multi Predicted /7

43 Multi Actual £

Tegy
..........
"y

0 10 20 30 40 50 60 70 85

Outline

Big data background
Geo-distribution motivation

Geo-distributed tasks

- Geo-distributed workflows

Conclusions and outlook

GD Workflows

[Jayalath&Eugster;|CDCS’13]

* ndatacenters DC, to DC,and d input datasets DS, to DS, - dataset DS;
consists of s; sub-datasets (1 < s,< n)

« GD workflow W, each task taking in one or more (possibly GD) datasets as
input and generating one or more datasets as output

Example deployment

DC+ DCo DCs

_ Execution
Xi - cluster

Problem Statement

* How to efficiently perform workflows with GD datasets”
* [wo aspects
1. Executing efficiently: runtime extensions
2. Expressing computation and constraints: language
* Model: geo-distributed datastructures and operations
 Why not transparent?

 Pig Latin/Pig and Flume Java/Crunch

‘Levels of Associativity”

A function £ can be

1. Associative (mathematical sense), £(X,-X,)= £f(f(X;) -£(X,)), e.g., max,
min, top-k

2. There exists a (known) function g s.t. £(X,-X,)= g(f(X;) -£(X,)), e.g., avg.

A. gis well-known (mostly for built-in simple functions, e.g., avg, word
count)

B. Can be synthesized (cf. 3rd Homomorphism Thm. [Morihata et al.;POPL’'09])
C. Can not be synthesized
3. Doesn't exist / is unknown, e.g., join, top-k word count

Why not let programmer explicitly code?

Manual Distribution Example

input lines = LOAD ‘input file’
AS (line:chararray);
words = FOREACH input lines GENERATE
FLATTEN (TOKENIZE (line)) AS word;
word groups = GROUP words BY word;
word count = FOREACH word groups
GENERATE group, COUNT (words) ;
STORE word count INTO 'output file’;

 More lines of code

* One hard-wired path - may not
be optimal

» Has to be associative (e.g., AVG)

or “aggregatable” if not strictly
associative (e.g., COUNT+SUM)

/l Part 1 : Executed in both datacenters
input lines = LOAD ‘input file’
AS (line:chararray) ;
words = FOREACH input lines GENERATE
FLATTEN (TOKENIZE (1ine)) AS word;
word groups = GROUP words BY word;
word count = FOREACH word groups
GENERATE group, COUNT (words) :;
STORE word count INTO "filel’;

/I Part 2 : Executed in datacenter DC2 only
/I Copied data is stored in file2.
/I -> Copy file1 of DC2 to file2 in DC1.

// Part 3: Executed in datacenter DC1 only
recordsl = LOAD ’'filel’ AS
(word:chararray, count:int);
records?2 = LOAD ’'file2’ AS
(word:chararray, count:int);
all records = UNION recordsl, recordsZ;
grouped = GROUP all records BY word;
word count = FOREACH grouped GENERATE
group, SUM(all records.count);
STORE word count INTO ’output file’;

Pig Latin Background: Types

« Simple: int, long, £loat, double, chararray,
bytearray, boolean

« Complex
 tuple - an ordered set of fields
 bag - a collection of tuples
e map - a set of key-value pairs

* relation - an outer bag with no complex types

Operations and Functions

* Operations

e UNION ceates a union of two or more relations

e CROSS creates a cross product of two or more relations

e JOIN joins two or more relations

« GROUP groups elements of a relation based on a given criteria
e Functions

e Evalfunctions, e.g., AVG, COUNT, CONCAT, SUM, TOKENIZE

» Math functions, e.g., ABS, COS

« String functions, e.g., SUBSTRING, TRIM

o User defined functions (UDFs)

Rout

e Define two new complex data structures

e gdbag - collection of tuples but may represent tuples from
multiple datacenters

e gdmap - collection of key-value pairs which may be from multiple
datacenters

« bag and map are retained but pinned to single datacenters
» Operations and functions
e String and math functions are always applied tuple-wise

« Applied individually to sub-datasets in respective datacenters

Fval Functions

* Eval functions are usually applied to groups of tuples

« Users can provide optional merge function “g“(original
eval function “£" is called work function)

* Merge function: eval function is applied to individual
sub-datasets followed by aggregation via merge

* Otherwise: all data represented by the corresponding
datastructure copied to a single datacenter

e Destination is decided by Rout runtime (Rrun)

Operators and Example

» Other operations

« Load and store operations - GDLOAD, GDSTORE

» Operations for converting between bags/maps and gdbags/gdmaps - COLLAPSE,
GDCONVERT

e GD relational operations - GDJOIN, GDGROUP

// Input represents data in both datacenters

gd input lines = GDLOAD ’'input’ AS (line:chararray);

gd words = FOREACH input lines GENERATE
FLATTEN (TOKENIZE (1line)) AS word;

gd word groups = GDGROUP gd words BY word;

gd word count = FOREACH gd word groups GENERATE group,
COUNT (gd words) ;

word count = COLLAPSE gd word count;

STORE word count INTO ’output file’;

Rout Runtime Infrastructure
(Rrun)

Execution steps of Rrun

Boot Level 1 Level 2 et
q Dataflow q Dataflow q gie
Programs Execution
, Graph Graph _
Pig Copy Runtime
interpreter heuristic decisions

* Lazy heuristic copying data across datacenters when needed

 E.g., operation is non-associative and no merge function is
provided

* Only decides at which points data should be copied, not
where to

Evaluation

» 2 EC2 datacenters

* 10 nodes from each datacenter with 1.7 GB of memory and 1 EC2 virtual core
running Ubuntu Linux

« Uses HADOOPData dataset, search for exceptions

Log Search

500

450+

Pig - Dataset? 400} M SearchMR [Copy
350]
3001
2507

_ 200t
Pig - Dataset1 150!

| out- Datwer

50+
0 100 200 300 400 500 600 700 0

Execution Time (s)

Rout - Dataset?2 Pig - Dataset?2
Execution Time (s)
Rout - copy data after individual searches

Log Debugger

Pig - Dataset2

Execution Time (s)

Pig - Datasetl

9007
8007
7007
6007
5007
4007
3007
2007
1007

B CountMR = MergeMR

™ Copy I

Weather Explorer

0 200 400 600 800 1000 1200 1400 1600 1800
Execution Time (s)
Pig - Dataset?2

Pig - Datasetl
tl

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

Execution Time (s)

Execution Time (s)

45007

4000
3500
3000
2500
2000
1500
1000

500

Rout - Datasetl Pig - Datasetl

- [l WeatherMR [Copy I
0

Rout - Datasetl Pig - Datasetl

Programmer Effort

Experiment FlumeJava Pig
Naive Explicit DuctWork Naive Explicit Rout
LoC K |LoC K | LoC K LoC K |LoC K | LoC K
Log debugger 5 7 |11 14 | 6 8 6 15 | 13 26 | 7 18
Log search 3 4 |8 9 |4 5 3 7 |8 13 | 4 8
Weather explorer 7 10 | 12 15| 8 11 (| 7 17 | 12 24 | 7 18
Weather top £ count 5 8 11 14 | 6 10 || 6 17 | 11 23 | 7 20
Weather top k average || 5 7 |11 13 | 6 9 6 17 | 12 25 | 7 20
Experiment DuctWork/FlumeJava Rout/Pig
Compared To Naive | Compared To Explicit || Compared To Naive | Compared To Explicit
LoC K LoC K LoC K LoC K
Log debugger +20% +28% —45% —43% +17% +20% —46% —31%
Log search +33% +25% —50% —44% +33% +14% —50% —38%
Weather explorer +14% +10% —33% —27% +0% 4+6% —42% —25%
Weather top k count +20% +25% —45% —28% +17% +18% —-36% —15%
Weather top k average || +20% +28% —45% —31% +17% +18% —42% —20%

Outline

Big data background
Geo-distribution motivation
Geo-distributed tasks

Geo-distributed workflows

- Conclusions and outlook

Conclusions

Unlikely all data in the world will ever be in 1
datacenter

Communication latency related to distance
Geographical constraints matter
Operating closer to data pays off in most cases

Beyond the atmosphere - fog computing

Future Work

* Optimization
* DTGs/G-MR
* Heuristics to further reduce complexity
* Higher-degree polynomials for approximation
* Rout reconciliation
* Fine granularity of DTG oftline optimization

e Simple Rout heuristic considering online resource usage

Yet More Future Work

* Model and expressiveness
e Flume Java/Ductwork
 |terative and incremental jobs, main-memory datastructs, cf. Flink, Spark

* Optimal aggregation [Culhane et al.;HotCloud’14], [Culhane et
al.;INFOCOM’15]

* UDFs
e Security
* Integrity, availability, and isolation [Stephen&Eugster;Middleware’13]

« Confidentiality [Stephen et al.;HotCloud’14], [Stephen et al.;ASE’14]

Next Week

 Resource management

e Security

