Geo-Distributed Big Data Processing

Patrick Eugster

Outline

- Big data background
- Geo-distribution motivation
- Geo-distributed tasks
- Geo-distributed workflows
- Conclusions and outlook

Outline

- Big data background
- Geo-distribution motivation
- Geo-distributed tasks
- Geo-distributed workflows
- Conclusions and outlook

Big Data

- Large datasets ranging from hundreds of GBs to hundreds of TBs (for most users) and even PBs for large corporations [Wikipedia]
 - Often GB range [Schwarzkopf et al.;HotCloud'12]
- Too large for traditional relational database tools and single nodes to handle
- Processed using data-parallel software running tens, hundreds, even thousands of computers

Big Data - Why ?

- We need it
 - More users connected to the Internet: "*Everyone on earth will be connected to the Internet by 2020*" [E. Schmidt'13]
- We want it
 - Applications use large datasets, e.g., for operation, monitoring, auditing, knowledge extraction
- Because we can
 - Large amounts of cheap "cloud" storage available: "*Amazon S3* contains over 449 billion objects and during peak time, processes more than 290K requests per second" [AWS blog'11]

Processing Big Data

- MapReduce (MR) popularized by [Dean and Ghemawat;OSDI'04]
 - Inspired by functional programming
 - Consists of two phases
 - map takes input records and outputs sets of <key, value> pairs
 - reduce handles set of values for given keys and emits sets of values
 - Open source Apache Hadoop
- HDFS distributed file system inspired by Google's GFS [Ghemawat et al.;SOSP'03]

Workflow Programming

- Many "high-level languages" proposed, e.g.,
 - Pig Latin [Olston et al.;SIGMOD'08]
 - (Mostly) declarative untyped scripting language
 - Open source Apache Pig
 - Flume Java [Chambers et al.;PLDI'10]
 - Java library
 - Open source Apache Crunch
- Many compile to MR

Pig Latin Example

"Word count"

"Yahoo estimates that between 40% and 60% of its Hadoop workloads are generated from Pig [...] scripts. With 100,000 CPUs at Yahoo and roughly 50% running Hadoop, that's a lot [...]" [IBM DeveloperWorks'12]

Pig Latin Example

"Yahoo estim are generate roughly 50%

SAY "WORD COUNT" ONE MORE TIME... memegenerator.net

ZE(line))

JNT(words);

workloads ahoo and erWorks'12]

Outline

- Big data background
- Geo-distribution motivation
- Geo-distributed tasks
- Geo-distributed workflows
- Conclusions and outlook

Geo-Distributed Big Data

- Many large datasets geo-distributed, i.e., split across sites
 - Stored near resp. sources, frequently accessing entities
 - Gathered and stored by different (sub-)organizations yet shared towards a common goal

DC2

DC3

DC1

- E.g., US census, Google "buckets"
- Replicated across datacenters for availability, incompletely to limit the overhead of updates

Geo-Distributed Big Data

- Many analysis tasks involve several datasets, which may be distributed
 - Legal constraints may confine certain datasets to specific locations
- The "cloud" is not a single datacenter
- Inter-DC latency ≠ intra-DC latency

Concrete Scenario

- Global web-based service provider
 - Serve customers from close-by datacenters
 - "Regional" customer bases
 - Run analyses across all regions
 - E.g., average age of customers buying product *x*

GD in current Toolchain

• Hadoop

- Assumes uniform latencies
- Reducer placement based on resource availability
- Data must be in one HDFS instance or S3 bucket
- HDFS
 - Single point of management (namenode)
 - Performs poorly with high and/or inconsistent latencies
- Pig Latin, Flume Java et al.
 - Inherit weaknesses of underlying systems
 - No support for expressing distribution

Potential for Improvement

- Conjecture: poor execution choices result in high costs/delays
- E.g., US Census 2000 data (121 GB), 2 Amazon EC2 datacenters, MapReduce cluster of 10 nodes each
- Two tasks (MR jobs) (1) filter records (2) group records
 - Associative: can execute on subsets of data and then aggregate

State of the Art

- **GD storage**: Many systems, e.g., [Lloyd et al.;SOSP'11], [Sovran et al.;SOSP'11], [Cho&Aguilera;ATC'12],[Sciasica&Pedone;DSN'13], [Zhang et al.;SOSP'13], consider GD data reads&writes.
- **GD data location**: Volley [Agraval et al.;NSDI'10] or [Tran et al.;ATC'11] migrate GD big data based on application needs.
- **GD computation**: HOG [Weitzel et al.;MTAGS'12] modifies Hadoop for Open Science Grid. Focus on site failures, not performance. G-Hadoop [Wanga et al.;Future Gen. Comp. Systems'13] similar.
- **(G)D programming**: Flink [Ewen et al.;PVLDB'12], Presto [Venkataraman et al.;HotCloud'12], Spark [Zaharia et al.;NSDI'12] support distributed datastructures but still in single datacenter.

Outline

- Big data background
- Geo-distribution motivation
- Geo-distributed tasks
- Geo-distributed workflows
- Conclusions and outlook

GD Tasks [Jayalath&Eugster;IEEE TC'14]

- Dataset / distributed across n datacenters (DC₁ to DC_n), each has execution cluster
- Sequence of m tasks T_1 to T_m (cf. transducers)

Problem Statement

- How to efficiently perform a task sequence on a GD dataset?
- Several solutions varying by consolidation point, e.g., MR:
 - Copy all data to 1 datacenter, perform job
 - Perform mapping in respective datacenters, allocate all reducers in 1 datacenter
 - Perform mapping and reducing in respective datacenters, aggregate subsequently (assuming "associativity")
- Combinations, e.g., consolidate input from 2 of 3 datacenters, perform mapping individually, then reducing in 1 datacenter

Data Transformation Graphs (DTGs)

- A node distribution of data and the task execution progress
- Weight of an edge cost (monetary) or time for performing a task or a copy operation
- Each path from a starting node to an end node is a possible execution path
- A shortest path calculation algorithm is used to determine the optimal path
- Optimal with respect to a given partition distribution and other parameter values

DTGs by Example

- 3 datacenters, 1 input partition in each, 1 MR job (2 tasks - map and reduce)
- 3 stages stage *i* contains all nodes with exactly *i* tasks executed
- "Direct" vs "indirect" MR
 - Intermediate data stored locally

Sequences

- DTG for each job
- Each node in stage 2 of DTG of MR job *i* merged with corresponding node in stage 0 of MR job *i*+1 DTG

Sampling and Extrapolation

- Determining edge weights
 - Execute each task on data samples in all execution clusters (in parallel), develop functions to determine execution time and output size
 - (Not sampling all paths)
 - Extrapolation used to predict execution time and output size for large amounts of data
 - Users can manually specify functions

Determining Edge Weights

Example DTG and functions

G-MR

- Java framework implementing DTGs and corresponding algorithms
 - Extends Apache Hadoop
 - Java annotations for associativity, functions
- Tested in Amazon EC2 with up to 1 TB of data distributed across 4 datacenters

GroupManager + DTG al	DC config	Job config			
	JobManager				
Hadoop	Copy Manager		AggregationManager		

Evaluation Setup

- Up to 4 EC2 datacenters located in US East Coast, US West Coast, Europe and, Asia
- 10 large EC2 nodes (7.5 GB of memory, 4 EC2 compute units) in each datacenter
- Nodes leased at \$0.34 per hour, data transfer \$0.1 per GB

Datasets

Task sequences

Dataset	GBs	Description	Job	Description			
CENSUSData	121	Year 2000 US Census	CENSUSPROCESSOR	Filters and groups CENSUSData.			
EDUData	5	University Website crawl	WORDCOUNT	Counts the number of occurences of words in EDUData			
WEATHERData	20	Weather measurements	MEDIANWEATHER	Computes the median of a record in WEATHERData			
PLANTData	10	Properties of Iris plant	KNN	Type of each plant record in PLANTData			
HADOOPData	100	Logs of Yahoo! Hadoop cluster	ETL	Extracts and performs a cross product on HADOOPData			
NGRAMData	300	Google Books Ngrams	NGRAM	All combinations of last two words of 4 grams			

Evaluation

- Two datacenters (DC_1 and DC_2)
- Different execution paths
 - CopyAndExecute copy all data to a single datacenter prior to execution
 - ExecuteAndCopy execute all tasks prior to copying
 - PartialCopy balance the partitions in the middle

Monetary Cost

Optimal - copy data after first MR job

Execution Time

Optimal - copy data after first MR job

% of input in DC1 % of input in DC1 **FIGUICION** ACCULACY

Outline

- Big data background
- Geo-distribution motivation
- Geo-distributed tasks
- Geo-distributed workflows
- Conclusions and outlook

GD Workflows [Jayalath&Eugster;ICDCS'13]

- *n* datacenters DC_1 to DC_n and *d* input datasets DS_1 to DS_d dataset DS_i consists of s_i sub-datasets $(1 \le s_i \le n)$
- GD workflow *W*, each task taking in one or more (possibly GD) datasets as input and generating one or more datasets as output

Example deployment

 X_i -

Problem Statement

- How to efficiently perform workflows with GD datasets?
- Two aspects
 - 1. Executing efficiently: runtime extensions
 - 2. Expressing computation and constraints: language
 - Model: geo-distributed datastructures and operations
 - Why not transparent?
 - Pig Latin/Pig and Flume Java/Crunch

"Levels of Associativity"

A function *f* can be

- 1. Associative (mathematical sense), $f(X_1 \cdot X_2) = f(f(X_1) \cdot f(X_2))$, e.g., max, min, top-k
- 2. There exists a (known) function g s.t. $f(X_1 \cdot X_2) = g(f(X_1) \cdot f(X_2))$, e.g., avg.

 - B. Can be synthesized (cf. 3rd Homomorphism Thm. [Morihata et al.; POPL'09])
 - C. Can not be synthesized
- 3. Doesn't exist / is unknown, e.g., join, top-k word count

Why not let programmer explicitly code?

Manual Distribution Example

```
input_lines = LOAD `input_file'
   AS (line:chararray);
words = FOREACH input_lines GENERATE
   FLATTEN(TOKENIZE(line)) AS word;
word_groups = GROUP words BY word;
word_count = FOREACH word_groups
   GENERATE group, COUNT(words);
STORE word_count INTO 'output_file';
```

- More lines of code
- One hard-wired path may not be optimal
- Has to be associative (e.g., AVG) or "aggregatable" if not strictly associative (e.g., COUNT+SUM)

```
// Part 1 : Executed in both datacenters
input_lines = LOAD `input_file'
AS (line:chararray);
words = FOREACH input_lines GENERATE
FLATTEN(TOKENIZE(line)) AS word;
word_groups = GROUP words BY word;
word_count = FOREACH word_groups
GENERATE group, COUNT(words);
STORE word_count INTO 'file1';
```

```
// Part 2 : Executed in datacenter DC2 only
// Copied data is stored in file2.
// -> Copy file1 of DC2 to file2 in DC1.
```

```
// Part 3: Executed in datacenter DC1 only
records1 = LOAD 'file1' AS
  (word:chararray, count:int);
records2 = LOAD 'file2' AS
  (word:chararray, count:int);
all_records = UNION records1, records2;
grouped = GROUP all_records BY word;
word_count = FOREACH grouped GENERATE
  group, SUM(all_records.count);
STORE word count INTO 'output file';
```

Pig Latin Background: Types

- Simple: int, long, float, double, chararray, bytearray, boolean
- Complex
 - **tuple** an ordered set of fields
 - **bag** a collection of **tuple**s
 - **map** a set of key-value pairs
 - relation an outer bag with no complex types

Operations and Functions

• Operations

- **UNION** ceates a union of two or more relations
- **CROSS** creates a cross product of two or more relations
- **JOIN** joins two or more relations
- **GROUP** groups elements of a relation based on a given criteria
- Functions
 - Eval functions, e.g., AVG, COUNT, CONCAT, SUM, TOKENIZE
 - *Math* functions, e.g., **ABS**, **COS**
 - *String* functions, e.g., **SUBSTRING**, **TRIM**
 - User defined functions (UDFs)

Rout

- Define two new complex data structures
 - **gdbag** collection of tuples but may represent tuples from multiple datacenters
 - **gdmap** collection of key-value pairs which may be from multiple datacenters
 - **bag** and **map** are retained but *pinned* to single datacenters
- Operations and functions
 - String and math functions are always applied tuple-wise
 - Applied individually to sub-datasets in respective datacenters

Eval Functions

- Eval functions are usually applied to groups of tuples
- Users can provide optional *merge* function "*g*"(original eval function "*f*" is called *work* function)
 - Merge function: eval function is applied to individual sub-datasets followed by aggregation via merge
 - Otherwise: all data represented by the corresponding datastructure copied to a single datacenter
 - Destination is decided by Rout runtime (Rrun)

Operators and Example

- Other operations
 - Load and store operations GDLOAD, GDSTORE
 - Operations for converting between **bag**S/**map**S and **gdbag**S/**gdmap**S **COLLAPSE**, **GDCONVERT**
 - GD relational operations GDJOIN, GDGROUP

```
// Input represents data in both datacenters
gd_input_lines = GDLOAD 'input' AS (line:chararray);
gd_words = FOREACH input_lines GENERATE
    FLATTEN(TOKENIZE(line)) AS word;
gd_word_groups = GDGROUP gd_words BY word;
gd_word_count = FOREACH gd_word_groups GENERATE group,
    COUNT(gd_words);
word_count = COLLAPSE gd_word_count;
STORE word_count INTO 'output_file';
```

Rout Runtime Infrastructure (Rrun)

Execution steps of Rrun

- Lazy heuristic copying data across datacenters when needed
 - E.g., operation is non-associative and no merge function is provided
 - Only decides at which points data should be copied, not where to

Rout - copy data after individual searches

Programmer Effort

Experiment	FlumeJava					Pig						
	Naïve		Explicit		DuctWork		Naïve		Explicit		Rout	
	LoC	Κ	LoC	Κ	LoC	Κ	LoC	Κ	LoC	Κ	LoC	Κ
Log debugger	5	7	11	14	6	8	6	15	13	26	7	18
Log search	3	4	8	9	4	5	3	7	8	13	4	8
Weather explorer	7	10	12	15	8	11	7	17	12	24	7	18
Weather top k count	5	8	11	14	6	10	6	17	11	23	7	20
Weather top k average	5	7	11	13	6	9	6	17	12	25	7	20

Experiment		DuctWork	k/FlumeJa	va	Rout/Pig				
	Compared To Naïve		Compar	ed To Explicit	Compar	ed To Naïve	Compared To Explicit		
	LoC	Κ	LoC	K	LoC	Κ	LoC	Κ	
Log debugger	+20%	+28%	-45%	-43%	+17%	+20%	-46%	-31%	
Log search	+33%	+25%	-50%	-44%	+33%	+14%	-50%	-38%	
Weather explorer	+14%	+10%	-33%	-27%	+0%	+6%	-42%	-25%	
Weather top k count	+20%	+25%	-45%	-28%	+17%	+18%	-36%	-15%	
Weather top k average	+20%	+28%	-45%	-31%	+17%	+18%	-42%	-20%	

Outline

- Big data background
- Geo-distribution motivation
- Geo-distributed tasks
- Geo-distributed workflows
- Conclusions and outlook

Conclusions

- Unlikely all data in the world will ever be in 1 datacenter
- Communication latency related to distance
- Geographical constraints matter
- Operating closer to data pays off in most cases
- Beyond the atmosphere fog computing

Future Work

- Optimization
 - DTGs/G-MR
 - Heuristics to further reduce complexity
 - Higher-degree polynomials for approximation
 - Rout reconciliation
 - Fine granularity of DTG offline optimization
 - Simple Rout heuristic considering online resource usage

Yet More Future Work

- Model and expressiveness
 - Flume Java/Ductwork
 - Iterative and incremental jobs, main-memory datastructs, cf. Flink, Spark
 - Optimal aggregation [Culhane et al.;HotCloud'14], [Culhane et al.;INFOCOM'15]
 - UDFs
- Security
 - Integrity, availability, and isolation [Stephen&Eugster;Middleware'13]
 - Confidentiality [Stephen et al.;HotCloud'14], [Stephen et al.;ASE'14]

Next Week

• Resource management

• Security