
Geo-Distributed Big 
Data Processing 

Patrick Eugster



Outline
• Big data background 

• Geo-distribution motivation 

• Geo-distributed tasks 

• Geo-distributed workflows 

• Conclusions and outlook



Outline
• Big data background

• Geo-distribution motivation 

• Geo-distributed tasks 

• Geo-distributed workflows 

• Conclusions and outlook



Big Data
• Large datasets ranging from hundreds of GBs to 

hundreds of TBs (for most users) and even PBs for 
large corporations [Wikipedia] 

• Often GB range [Schwarzkopf et al.;HotCloud’12] 

• Too large for traditional relational database tools 
and single nodes to handle 

• Processed using data-parallel software running 
tens, hundreds, even thousands of computers



Big Data - Why ?
• We need it 

• More users connected to the Internet: “Everyone on earth will be 
connected to the Internet by 2020” [E. Schmidt’13]  

• We want it 

• Applications use large datasets, e.g., for operation, monitoring, 
auditing, knowledge extraction 

• Because we can 

• Large amounts of cheap “cloud” storage available: “Amazon S3 
contains over 449 billion objects and during peak time, 
processes more than 290K requests per second” [AWS blog’11] 



Processing Big Data
• MapReduce (MR) popularized by [Dean and Ghemawat;OSDI’04] 

• Inspired by functional programming 

• Consists of two phases 

• map - takes input records and outputs sets of <key, 
value> pairs 

• reduce - handles set of values for given keys and emits 
sets of values 

• Open source Apache Hadoop 

• HDFS distributed file system inspired by Google’s GFS 
[Ghemawat et al.;SOSP’03]



Workflow Programming
• Many “high-level languages” proposed, e.g.,  

• Pig Latin [Olston et al.;SIGMOD’08] 

• (Mostly) declarative untyped scripting language 

• Open source Apache Pig 

• Flume Java [Chambers et al.;PLDI‘10] 

• Java library 

• Open source Apache Crunch 

• Many compile to MR

Load
Load

Filter

Join

Group

For Each

Store

Load
Load

Filter

Join

Validate

Group

For Each

Store

Validate

Validate

MapReduce boundary

Logical operation



Pig Latin Example

input_lines = LOAD ‘input_file’ AS (line:chararray); 
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) 
  AS word; 
word_groups = GROUP words BY word; 
word_count = FOREACH word_groups GENERATE group, COUNT(words); 
STORE word_count INTO ’output_file’;

“Word count” 

“Yahoo estimates that between 40% and 60% of its Hadoop workloads 
are generated from Pig [...] scripts. With 100,000 CPUs at Yahoo and 
roughly 50% running Hadoop, that’s a lot [...]” [IBM DeveloperWorks’12]



Pig Latin Example

input_lines = LOAD ‘input_file’ AS (line:chararray); 
words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) 
  AS word; 
word_groups = GROUP words BY word; 
word_count = FOREACH word_groups GENERATE group, COUNT(words); 
STORE word_count INTO ’output_file’;

“Word count” 

“Yahoo estimates that between 40% and 60% of its Hadoop workloads 
are generated from Pig [...] scripts. With 100,000 CPUs at Yahoo and 
roughly 50% running Hadoop, that’s a lot [...]” [IBM DeveloperWorks’12]



Outline
• Big data background 

• Geo-distribution motivation

• Geo-distributed tasks 

• Geo-distributed workflows 

• Conclusions and outlook



Geo-Distributed Big Data
• Many large datasets geo-distributed, i.e., split across 

sites  

• Stored near resp. sources, frequently accessing entities 

• Gathered and stored by different (sub-)organizations 
yet shared towards a common goal 

• E.g., US census, Google “buckets” 

• Replicated across datacenters for availability, 
incompletely to limit the overhead of updates



Geo-Distributed Big Data
• Many analysis tasks involve several datasets, 

which may be distributed 

• Legal constraints may confine certain datasets to 
specific locations 

• The “cloud” is not a single datacenter

• Inter-DC latency ≠ intra-DC latency



Concrete Scenario
• Global web-based service provider 

• Serve customers from close-by datacenters 

• “Regional” customer bases 

• Run analyses across all regions 

• E.g., average age of customers buying 
product x



GD in current Toolchain
• Hadoop

• HDFS

• Pig Latin, Flume Java et al.

• Assumes uniform latencies 

• Reducer placement based on resource availability 

• Data must be in one HDFS instance or S3 bucket

• Single point of management (namenode) 

• Performs poorly with high and/or inconsistent latencies

• Inherit weaknesses of underlying systems  

• No support for expressing distribution



Potential for Improvement
• Conjecture: poor execution choices result in high costs/delays  

• E.g., US Census 2000 data (121 GB), 2 Amazon EC2 datacenters, 
MapReduce cluster of 10 nodes each 

• Two tasks (MR jobs) (1) filter records (2) group records  

• Associative: can execute on subsets of data and then aggregate 

            

8

0

2

4

6

C
os

t 
($

)

Copy FilterGroupCopy

121 GB 61 GB

FilterCopy

            

 

0

2

4

6

8
T

im
e 

(h
ou

rs
)

Copy FilterCopyFilterGroupCopy

121 GB 61 GB



State of the Art
• GD storage: Many systems, e.g., [Lloyd et al.;SOSP’11], [Sovran et 

al.;SOSP’11], [Cho&Aguilera;ATC’12],[Sciasica&Pedone;DSN’13],
[Zhang et al.;SOSP’13], consider GD data reads&writes. 

• GD data location: Volley [Agraval et al.;NSDI’10] or [Tran et 
al.;ATC’11] migrate GD big data based on application needs. 

• GD computation: HOG [Weitzel et al.;MTAGS’12] modifies Hadoop 
for Open Science Grid. Focus on site failures, not performance. G-
Hadoop [Wanga et al.;Future Gen. Comp. Systems’13] similar. 

• (G)D programming: Flink [Ewen et al.;PVLDB’12], Presto 
[Venkataraman et al.;HotCloud’12], Spark [Zaharia et al.;NSDI’12] 
support distributed datastructures but still in single datacenter. 



Outline
• Big data background 

• Geo-distribution motivation 

• Geo-distributed tasks

• Geo-distributed workflows 

• Conclusions and outlook



GD Tasks 
[Jayalath&Eugster;IEEE TC’14]

• Dataset I distributed across n datacenters (DC1 to DCn), each has  
execution cluster  

• Sequence of m tasks T1 to Tm (cf. transducers)

...

DC1 DC2 DC3 DCn

DCi - datacenter

...

X1 X2 X3 Xn

Xi - Execution 
   cluster

I1

Ii - sub-dataset

I2 I3 In

T1

T2

Tm

Execution 
order

T - Task



Problem Statement
• How to efficiently perform a task sequence on a GD dataset? 

• Several solutions varying by consolidation point, e.g., MR:

• Copy all data to 1 datacenter, perform job 

• Perform mapping in respective datacenters, allocate all 
reducers in 1 datacenter 

• Perform mapping and reducing in respective datacenters, 
aggregate subsequently (assuming “associativity”)

• Combinations, e.g., consolidate input from 2 of 3 datacenters, 
perform mapping individually, then reducing in 1 datacenter



Data Transformation Graphs 
(DTGs)

• A node - distribution of data and the task execution progress 

• Weight of an edge - cost (monetary) or time for performing a 
task or a copy operation 

• Each path from a starting node to an end node is a possible 
execution path 

• A shortest path calculation algorithm is used to determine 
the optimal path 

• Optimal with respect to a given partition distribution and 
other parameter values



DTGs by Example
• 3 datacenters, 1 input 

partition in each, 1 MR 
job (2 tasks - map and 
reduce)  

• 3 stages - stage i 
contains all nodes with 
exactly i tasks executed 

• “Direct” vs “indirect” MR 

• Intermediate data 
stored locally

N0DN0A

stage =
   0

stage = 
   1

N0B

N1A N1B

N2A N2B

N0C

N1C

N2C

N1D

N2D

A=
<1,2,3>

B=
<2,2,3>

C=
<3,2,3>

D=
<1,1,3>

F=
<1,2,1>

G=
<1,2,2>

E=
<1,3,3>

N0E N0F N0G

N1E N1F N1G

N2E N2F N2G

J=
<2,2,2>

I=
<1,1,1>

H=
<3,3,3>

N0H N0I N0J

N1H N1I N1J

N2H N2I N2Jstage = 
   2



Sequences 

• DTG for each job 

• Each node in 
stage 2 of DTG of 
MR job i merged 
with corresponding 
node in stage 0 of 
MR job i+1 DTG

N0
A0

1

N0
B

N1
A N1

B

N2
A N2

B

N0
C

N1
C

N2
C

. . .
. . .
. . .2

4

N3
A N3

B N3
C

N4
A N4

B N4
C

. . .

. . .
3

A= <1,2,3> B= <2,2,3> C= <3,2,3>



Sampling and Extrapolation
• Determining edge weights 

• Execute each task on data samples in all execution 
clusters (in parallel), develop functions to determine 
execution time and output size 

• (Not sampling all paths) 

• Extrapolation used to predict execution time and 
output size for large amounts of data 

• Users can manually specify functions



Determining Edge Weights

• Two datacenters, 1 partition in each datacenter, 1 
MapReduce job (2 tasks)

N0
<1,2>stage 0

stage 1

stage 2

N1
<1,2>

N2
<1,2>

N0
<2,2>

N1
<2,2>

N2
<2,2>

N0
<1,1>

N1
<1,1>

N2
<1,1>

W1=Ψ/B2,1 , W2=Ψ*C2,1

W1=Ψ/B1,2, W2=Ψ*C1,2

W1=Mt(Ψ)

W2=2*Mt(Ψ)*X*K

W1=Rt(Ψ1)

W2=2*Rt(Ψ1)*X*K

W1=MRt(Ψ)
W2=2*MRt(Ψ))*X*K

Ψ1=Md(Ψ)

Ψ2=MRd(Ψ)

W1
W2

- Time
- Cost

W1= Ψ1/B2,1, W2= Ψ1*C2,1W1= Ψ1/B1,2, W2= Ψ1*C1,2

W1=Mt(2*Ψ)

W2=Mt(2*Ψ)*X*K

W1=MRt(2*Ψ)

W2=MRt(2*Ψ)*X*K

W1=Mt(2*Ψ)

W2=Mt(2*Ψ)*X*K

W1=Ψ2/B1,2 + At(2*Ψ2) 

W2=Ψ2*C1,2 + At(2*Ψ2)*X*K 

W1=Ψ2/B2,1 + At(2*Ψ2) 

W2=Ψ2*C2,1 + At(2*Ψ2)*X*K  
To next job

W1=Rt(2*Ψ1)

W2=Rt(2*Ψ1)*X*K
W1=Rt(2*Ψ1)

W2=Rt(2*Ψ1)*X*K

W1=MRt(2*Ψ)

W2=MRt(2*Ψ)*X*K

X1=X2=X

Example DTG and functions



G-MR
• Java framework implementing DTGs and corresponding 

algorithms 

• Extends Apache Hadoop 

• Java annotations for associativity, functions 

• Tested in Amazon EC2 with up to 1 TB of data distributed 
across 4 datacenters 

Copy
Manager

JobManager

Hadoop AggregationManager

GroupManager + DTG algorithm DC
config

Job
config



Evaluation Setup
• Up to 4 EC2 datacenters located in US East Coast, US West Coast, 

Europe and, Asia 

• 10 large EC2 nodes (7.5 GB of memory, 4 EC2 compute units) in 
each datacenter 

• Nodes leased at $0.34 per hour, data transfer $0.1 per GB 

Dataset GBs Description

CENSUSData 121 Year 2000 US Census

EDUData 5 University Website crawl

WEATHERData 20 Weather measurements

PLANTData 10 Properties of Iris plant

HADOOPData 100 Logs of Yahoo! Hadoop cluster

NGRAMData 300 Google Books Ngrams

Datasets Task sequences
Job Description

CENSUSPROCESSOR Filters and groups CENSUSData.

WORDCOUNT Counts the number of occurences of words in EDUData

MEDIANWEATHER Computes the median of a record in WEATHERData

KNN Type of each plant record in PLANTData

ETL Extracts and performs a cross product on HADOOPData

NGRAM All combinations of last two words of 4 grams



Evaluation

• Two datacenters (DC1 and DC2) 

• Different execution paths 

• CopyAndExecute - copy all data to a single datacenter prior to 
execution 

• ExecuteAndCopy - execute all tasks prior to copying 

• PartialCopy - balance the partitions in the middle



Monetary Cost
WORDCOUNT NGRAM

Optimal - ExecuteAndCopy Optimal - copy data after first MR job

               20 40 60 80

0.6

0.2

0.3

0.4

0.5

% of input in DC1

C
os

t 
($

)

CopyAndExecute
Optimal

   0 A B C D

20

0

5

10

15

Execution Path

Co
st

 ($
)

CopyAndExecute ExecuteAndCopy
Optimal

A
B

C
D PartialCopy



Execution Time
WORDCOUNT NGRAM

   0 A B C D

8

0

2

4

6

Execution Path

Ex
ec

ut
io

n 
Ti

m
e 

(h
ou

rs
)

CopyAndExecute ExecuteAndCopy
Optimal

A

B

C

D PartialCopy

   0 20 40 60 80

360

120

160

200

240

280

320

% of input in DC1

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) CopyAndExecute
Optimal

Optimal - ExecuteAndCopy Optimal - copy data after first MR job



Prediction Accuracy
   0 20 40 60 80

360

120

160

200

240

280

320

% of input in DC1
E
x
e
c
u
ti

o
n
 T

im
e
 (

s
e
c
) CopyAndExecute

Optimal

(a) Actual execution time

                  20 40 60 80

0.6

0.2

0.3

0.4

0.5

% of input in DC1

C
o
s
t 

($
)

CopyAndExecute
Optimal

(b) Actual monetary cost

900 10 20 30 40 50 60 70 80

320

120

160

200

240

280

% of input in DC1

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
e
c
)

Copy Predicted
Copy Actual

Multi Predicted
Multi Actual

(c) Time prediction

850 10 20 30 40 50 60 70

0.4

0.2

0.25

0.3

0.35

% of Input in DC1

C
o
s
t 

($
)

Copy Predicted
Copy Actual

Multi Predicted
Multi Actual

(d) Cost prediction

Figure 3: Optimizing a sequence of two MapReduce
jobs on a geo-distributed dataset for optimal execu-
tion time (a) and cost (b). The distribution of data
between two datacenters DC1 and DC2 is varied.
The Multi... runs of (c) and (d) correspond to the
Optimal execution paths of (a) and (b) respectively.

execution time optimization while Figure 3(b) shows
the results when the objective was to optimize for
monetary cost. Two Amazon EC2 datacenters are
used here, North Virgina and North California, with
10 large instances (7.5 GB of memory with 4 EC2
compute units) leased in each of them. The cost
of each instance was $0.34 per hour while the cost
for transferring data between two EC2 datacenters
was $0.1 per GB. The MapReduce job counts the
number of occurrences of each word of a text-based
dataset (“word count” [11]). Figures 3(d) and 3(c)
demonstrate the high accuracy of G-MRs predictions
achieved despite the performance variability in Ama-
zon EC2. More benchmarks can be found in [16].

Big Data-flow Processing

Rout. G-MR operates at the level of MapReduce
tasks, which represents the execution substrate for a
number of systems for big data processing. However,
programming directly with MapReduce is tedious for
complex jobs. For that reasons, several “data-flow”

languages have been proposed, which use specific data
structures to represent intermediate computation states,
and model computational steps as operations applied
to such data structures. Programs in many of these
languages are directly compiled to MapReduce tasks.

Another limitation of G-MR is that it does not
support joining of datasets, which is a requirement
for many big data analysis scenarios.

Next we thus describe a more generic approach for
geo-distributed big data processing, which consists in
a moderate extension we made to Pig Latin [18] (im-
plemented in Apache Pig [18, 7]), named Rout. Our
system exposes only little geo-distribution to pro-
grammers and lets the distributed runtime environ-
ment deal with the tedious aspects of geo-distribution
such as orchestration of operations.

Figure 4 shows a high-level overview of the exe-
cution of a Rout program. The Rout runtime envi-
ronment, named Rrun, first applies the same algo-
rithms as the Pig Latin interpreter for generating a
MapReduce data-flow graph. We refer to this data-
flow graph as level one data-flow graph. In this step,
Rrun assumes all datasets to be located in a single
datacenter. After the above step, Rrun analyzes the
generated data-flow graph to determine the places
where data has to be transferred over the network
across datacenters. For example, all data of a geo-
distributed dataset may have to be transferred to a
single datacenter before performing non-associative
functions. The data-flow graph will be annotated ac-
cordingly. We refer to the mechanism used to deter-
mine the scheduling of these data transfer operations
as data transfer heuristic. The resulting updated
data-flow graph is referred to as level two data-flow
graph.

Rout 
Program

Level 1 
Dataflow 
Graph

Level 2 
Dataflow 
Graph

Pig
interpreter

Copy 
heuristic Program 

Execution

Runtime 
decisions

Figure 4: Overview of execution of a Rout program.

In this latter data-flow graph associative MapRe-
duce jobs are executed without transferring data across
datacenters. That is, such MapReduce jobs are exe-
cuted individually on sub-datasets in the respective
datacenters, and the results are stored in the same re-
spective datacenters. Data transfer operations con-
solidate all corresponding data in a single datacen-
ter. A simple data transfer heuristics follows a lazy
execution strategy in that sub-datasets of a given

5



Outline
• Big data background 

• Geo-distribution motivation 

• Geo-distributed tasks 

• Geo-distributed workflows

• Conclusions and outlook



• n datacenters DC1 to DCn and d input datasets DS1 to DSd - dataset DSi 
consists of si sub-datasets (1 ≤ si ≤ n) 

• GD workflow W, each task taking in one or more (possibly GD) datasets as 
input and generating one or more datasets as output 

GD Workflows 
[Jayalath&Eugster;ICDCS’13]

Xi - Execution cluster

DC1 DC2 DC3

X1 X2 X3

W

Example deployment 

I1,1
I3,1

I3,3

I1,3

I1,2 I2,1

I3,2I2,2



Problem Statement
• How to efficiently perform workflows with GD datasets? 

• Two aspects 

1. Executing efficiently: runtime extensions  

2. Expressing computation and constraints: language 

• Model: geo-distributed datastructures and operations 

• Why not transparent? 

• Pig Latin/Pig and Flume Java/Crunch 



“Levels of Associativity”
A function f can be 

1. Associative (mathematical sense), f(X1.X2)= f(f(X1).f(X2)), e.g., max, 
min, top-k 

2. There exists a (known) function g s.t. f(X1.X2)= g(f(X1).f(X2)), e.g., avg. 

A. g is well-known (mostly for built-in simple functions, e.g., avg, word 
count) 

B. Can be synthesized (cf. 3rd Homomorphism Thm. [Morihata et al.;POPL’09]) 

C. Can not be synthesized 

3. Doesn’t exist / is unknown, e.g., join, top-k word count 

Why not let programmer explicitly code?



Manual Distribution Example
input_lines = LOAD ‘input_file’  
 AS (line:chararray); 
words = FOREACH input_lines GENERATE 
 FLATTEN(TOKENIZE(line)) AS word; 
word_groups = GROUP words BY word; 
word_count = FOREACH word_groups   
 GENERATE group, COUNT(words); 
STORE word_count INTO ’output_file’; 

• More lines of code 

• One hard-wired path - may not 
be optimal 

• Has to be associative (e.g., AVG) 
or “aggregatable” if not strictly 
associative (e.g., COUNT+SUM)

// Part 1 : Executed in both datacenters
input_lines = LOAD ‘input_file’  
 AS (line:chararray); 
words = FOREACH input_lines GENERATE 
 FLATTEN(TOKENIZE(line)) AS word; 
word_groups = GROUP words BY word; 
word_count = FOREACH word_groups   
 GENERATE group, COUNT(words); 
STORE word_count INTO ’file1’; 

// Part 2 : Executed in datacenter DC2 only
// Copied data is stored in file2.
// -> Copy file1 of DC2 to file2 in DC1.

// Part 3: Executed in datacenter DC1 only
records1 = LOAD ’file1’ AS  
 (word:chararray, count:int); 
records2 = LOAD ’file2’ AS  
 (word:chararray, count:int); 
all_records = UNION records1, records2; 
grouped = GROUP all_records BY word; 
word_count = FOREACH grouped GENERATE 
 group, SUM(all_records.count); 
STORE word_count INTO ’output_file’;



Pig Latin Background: Types
• Simple: int, long, float, double, chararray, 
bytearray, boolean 

• Complex 

• tuple - an ordered set of fields 

• bag - a collection of tuples 

• map - a set of key-value pairs 

• relation - an outer bag with no complex types



Operations and Functions
• Operations 

• UNION ceates a union of two or more relations 

• CROSS creates a cross product of two or more relations 

• JOIN joins two or more relations 

• GROUP groups elements of a relation based on a given criteria 

• Functions 

• Eval functions, e.g., AVG, COUNT, CONCAT, SUM, TOKENIZE 

• Math functions, e.g., ABS, COS 

• String functions, e.g., SUBSTRING, TRIM 

• User defined functions (UDFs)



Rout
• Define two new complex data structures 

• gdbag - collection of tuples but may represent tuples from 
multiple datacenters 

• gdmap - collection of key-value pairs which may be from multiple 
datacenters 

• bag and map are retained but pinned to single datacenters  

• Operations and functions 

• String and math functions are always applied tuple-wise 

• Applied individually to sub-datasets in respective datacenters 



Eval Functions
• Eval functions are usually applied to groups of tuples  

• Users can provide optional merge function “g“(original 
eval function “f” is called work function) 

• Merge function: eval function is applied to individual 
sub-datasets followed by aggregation via merge  

• Otherwise: all data represented by the corresponding 
datastructure copied to a single datacenter 

• Destination is decided by Rout runtime (Rrun)



Operators and Example
• Other operations 

• Load and store operations - GDLOAD, GDSTORE

• Operations for converting between bags/maps and gdbags/gdmaps - COLLAPSE, 
GDCONVERT

• GD relational operations - GDJOIN, GDGROUP

// Input represents data in both datacenters
gd_input_lines = GDLOAD ’input’ AS (line:chararray); 
gd_words = FOREACH input_lines GENERATE   
 FLATTEN(TOKENIZE(line)) AS word; 
gd_word_groups = GDGROUP gd_words BY word; 
gd_word_count = FOREACH gd_word_groups GENERATE group,   
 COUNT(gd_words); 
word_count = COLLAPSE gd_word_count; 
STORE word_count INTO ’output_file’;



Rout Runtime Infrastructure 
(Rrun)

Execution steps of Rrun 

• Lazy heuristic copying data across datacenters when needed 

• E.g., operation is non-associative and no merge function is 
provided 

• Only decides at which points data should be copied, not 
where to

Rout 
Programs

Level 1 
Dataflow 
Graph

Level 2 
Dataflow 

Graph

Program 
Execution

Pig 
interpreter

Copy 
heuristic

Runtime 
decisions



Evaluation
• 2 EC2 datacenters 

• 10 nodes from each datacenter with 1.7 GB of memory and 1 EC2 virtual core 
running Ubuntu Linux 

• Uses HADOOPData dataset, search for exceptions

Log Search

Rout - copy data after individual searches

18000 200 400 600 800 1000 1200 1400 1600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(a) Log debugger

7000 100 200 300 400 500 600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(b) Log search

90000 1000 2000 3000 4000 5000 6000 7000 8000

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(c) Weather explorer

Figure 8. Total execution time

                  

900

0
100
200
300
400
500
600
700
800

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

CountMR MergeMR

Copy

(a) Log debugger

                  

250

0

50

100

150

200

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Pig - Dataset1

- Dataset1
- Dataset1

SearchMR Copy

Rout -Dataset1

(b) Log search

                  

4500

0
500

1000
1500
2000
2500
3000
3500
4000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

WeatherMR Copy

(c) Weather explorer

Figure 9. Breakdown of execution time - Dataset1

                  

1400

0

200

400

600

800

1000

1200

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

CountMR MergeMR
Copy

(a) Log debugger

                  

500

0

50

100

150

200

250

300

350

400

450

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rout - Dataset2 Pig - Dataset2

SearchMR Copy

(b) Log search

                  

9000

0
1000
2000
3000
4000
5000
6000
7000
8000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

WeatherMR Copy

(c) Weather explorer

Figure 10. Breakdown of execution time - Dataset2

execution, representing their individual execution times from
left to right in the order in which they occur in the respective
schedules. More precisely, PigLatin executes the script as a
single MapReduce job. Due to execution techniques detailed
in Section IV, Rrun executes the script as two MapReduce
jobs instead. The first MapReduce job (CountMR) deter-
mines the results for input in each individual datacenter.
The results are then copied to a single datacenter (Copy)
and merged using another MapReduce job (MergeMR).

As the figures illustrate, Rout performs the task more
efficiently than PigLatin – in only 86% of the time for the
smaller Dataset1 compared to PigLatin and in only 64% of
the time for the full dataset, Dataset2. This is mainly due
to two reasons: (1) since Rrun executes a part of the script
keeping input data GD, the amount of data that is copied
across datacenters is significantly smaller; (2) for executing
the count MapReduce job, Rrun employes Hadoop clusters

in both datacenters, significantly reducing total execution
time.

C. Log Search

The second script performs an advanced search operation,
again on HADOOPDATA (thus Dataset1 and Dataset2 are
the same as for the previous benchmark). The search can
be for specific records in the log files. In our example we
searched and listed the execution times of each MapReduce
job logged.

Both Rrun and PigLatin dataflow graphs consisted of a
single MapReduce job (SearchMR) but in the former case
the MapReduce job was executed while keeping input data
GD resulting in a MapReduce job being executed in each
of the Hadoop clusters. The results from the datacenters
can be considered together with no need for merging. The
corresponding execution times for Dataset1 and Dataset2

18000 200 400 600 800 1000 1200 1400 1600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(a) Log debugger

7000 100 200 300 400 500 600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(b) Log search

90000 1000 2000 3000 4000 5000 6000 7000 8000

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(c) Weather explorer

Figure 8. Total execution time

                  

900

0
100
200
300
400
500
600
700
800

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

CountMR MergeMR

Copy

(a) Log debugger

                  

250

0

50

100

150

200

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Pig - Dataset1

- Dataset1
- Dataset1

SearchMR Copy

Rout -Dataset1

(b) Log search

                  

4500

0
500

1000
1500
2000
2500
3000
3500
4000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

WeatherMR Copy

(c) Weather explorer

Figure 9. Breakdown of execution time - Dataset1

                  

1400

0

200

400

600

800

1000

1200

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

CountMR MergeMR
Copy

(a) Log debugger

                  

500

0

50

100

150

200

250

300

350

400

450

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rout - Dataset2 Pig - Dataset2

SearchMR Copy

(b) Log search

                  

9000

0
1000
2000
3000
4000
5000
6000
7000
8000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

WeatherMR Copy

(c) Weather explorer

Figure 10. Breakdown of execution time - Dataset2

execution, representing their individual execution times from
left to right in the order in which they occur in the respective
schedules. More precisely, PigLatin executes the script as a
single MapReduce job. Due to execution techniques detailed
in Section IV, Rrun executes the script as two MapReduce
jobs instead. The first MapReduce job (CountMR) deter-
mines the results for input in each individual datacenter.
The results are then copied to a single datacenter (Copy)
and merged using another MapReduce job (MergeMR).

As the figures illustrate, Rout performs the task more
efficiently than PigLatin – in only 86% of the time for the
smaller Dataset1 compared to PigLatin and in only 64% of
the time for the full dataset, Dataset2. This is mainly due
to two reasons: (1) since Rrun executes a part of the script
keeping input data GD, the amount of data that is copied
across datacenters is significantly smaller; (2) for executing
the count MapReduce job, Rrun employes Hadoop clusters

in both datacenters, significantly reducing total execution
time.

C. Log Search

The second script performs an advanced search operation,
again on HADOOPDATA (thus Dataset1 and Dataset2 are
the same as for the previous benchmark). The search can
be for specific records in the log files. In our example we
searched and listed the execution times of each MapReduce
job logged.

Both Rrun and PigLatin dataflow graphs consisted of a
single MapReduce job (SearchMR) but in the former case
the MapReduce job was executed while keeping input data
GD resulting in a MapReduce job being executed in each
of the Hadoop clusters. The results from the datacenters
can be considered together with no need for merging. The
corresponding execution times for Dataset1 and Dataset2



Log Debugger

18000 200 400 600 800 1000 1200 1400 1600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(a) Log debugger

7000 100 200 300 400 500 600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(b) Log search

90000 1000 2000 3000 4000 5000 6000 7000 8000

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(c) Weather explorer

Figure 8. Total execution time

                  

900

0
100
200
300
400
500
600
700
800

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

CountMR MergeMR

Copy

(a) Log debugger

                  

250

0

50

100

150

200

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Pig - Dataset1

- Dataset1
- Dataset1

SearchMR Copy

Rout -Dataset1

(b) Log search

                  

4500

0
500

1000
1500
2000
2500
3000
3500
4000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

WeatherMR Copy

(c) Weather explorer

Figure 9. Breakdown of execution time - Dataset1

                  

1400

0

200

400

600

800

1000

1200

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

CountMR MergeMR
Copy

(a) Log debugger

                  

500

0

50

100

150

200

250

300

350

400

450

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rout - Dataset2 Pig - Dataset2

SearchMR Copy

(b) Log search

                  

9000

0
1000
2000
3000
4000
5000
6000
7000
8000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

WeatherMR Copy

(c) Weather explorer

Figure 10. Breakdown of execution time - Dataset2

execution, representing their individual execution times from
left to right in the order in which they occur in the respective
schedules. More precisely, PigLatin executes the script as a
single MapReduce job. Due to execution techniques detailed
in Section IV, Rrun executes the script as two MapReduce
jobs instead. The first MapReduce job (CountMR) deter-
mines the results for input in each individual datacenter.
The results are then copied to a single datacenter (Copy)
and merged using another MapReduce job (MergeMR).

As the figures illustrate, Rout performs the task more
efficiently than PigLatin – in only 86% of the time for the
smaller Dataset1 compared to PigLatin and in only 64% of
the time for the full dataset, Dataset2. This is mainly due
to two reasons: (1) since Rrun executes a part of the script
keeping input data GD, the amount of data that is copied
across datacenters is significantly smaller; (2) for executing
the count MapReduce job, Rrun employes Hadoop clusters

in both datacenters, significantly reducing total execution
time.

C. Log Search

The second script performs an advanced search operation,
again on HADOOPDATA (thus Dataset1 and Dataset2 are
the same as for the previous benchmark). The search can
be for specific records in the log files. In our example we
searched and listed the execution times of each MapReduce
job logged.

Both Rrun and PigLatin dataflow graphs consisted of a
single MapReduce job (SearchMR) but in the former case
the MapReduce job was executed while keeping input data
GD resulting in a MapReduce job being executed in each
of the Hadoop clusters. The results from the datacenters
can be considered together with no need for merging. The
corresponding execution times for Dataset1 and Dataset2

18000 200 400 600 800 1000 1200 1400 1600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(a) Log debugger

7000 100 200 300 400 500 600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(b) Log search

90000 1000 2000 3000 4000 5000 6000 7000 8000

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(c) Weather explorer

Figure 8. Total execution time

                  

900

0
100
200
300
400
500
600
700
800

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

CountMR MergeMR

Copy

(a) Log debugger

                  

250

0

50

100

150

200

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Pig - Dataset1

- Dataset1
- Dataset1

SearchMR Copy

Rout -Dataset1

(b) Log search

                  

4500

0
500

1000
1500
2000
2500
3000
3500
4000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

WeatherMR Copy

(c) Weather explorer

Figure 9. Breakdown of execution time - Dataset1

                  

1400

0

200

400

600

800

1000

1200

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

CountMR MergeMR
Copy

(a) Log debugger

                  

500

0

50

100

150

200

250

300

350

400

450

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rout - Dataset2 Pig - Dataset2

SearchMR Copy

(b) Log search

                  

9000

0
1000
2000
3000
4000
5000
6000
7000
8000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

WeatherMR Copy

(c) Weather explorer

Figure 10. Breakdown of execution time - Dataset2

execution, representing their individual execution times from
left to right in the order in which they occur in the respective
schedules. More precisely, PigLatin executes the script as a
single MapReduce job. Due to execution techniques detailed
in Section IV, Rrun executes the script as two MapReduce
jobs instead. The first MapReduce job (CountMR) deter-
mines the results for input in each individual datacenter.
The results are then copied to a single datacenter (Copy)
and merged using another MapReduce job (MergeMR).

As the figures illustrate, Rout performs the task more
efficiently than PigLatin – in only 86% of the time for the
smaller Dataset1 compared to PigLatin and in only 64% of
the time for the full dataset, Dataset2. This is mainly due
to two reasons: (1) since Rrun executes a part of the script
keeping input data GD, the amount of data that is copied
across datacenters is significantly smaller; (2) for executing
the count MapReduce job, Rrun employes Hadoop clusters

in both datacenters, significantly reducing total execution
time.

C. Log Search

The second script performs an advanced search operation,
again on HADOOPDATA (thus Dataset1 and Dataset2 are
the same as for the previous benchmark). The search can
be for specific records in the log files. In our example we
searched and listed the execution times of each MapReduce
job logged.

Both Rrun and PigLatin dataflow graphs consisted of a
single MapReduce job (SearchMR) but in the former case
the MapReduce job was executed while keeping input data
GD resulting in a MapReduce job being executed in each
of the Hadoop clusters. The results from the datacenters
can be considered together with no need for merging. The
corresponding execution times for Dataset1 and Dataset2

18000 200 400 600 800 1000 1200 1400 1600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(a) Log debugger

7000 100 200 300 400 500 600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(b) Log search

90000 1000 2000 3000 4000 5000 6000 7000 8000

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(c) Weather explorer

Figure 8. Total execution time

                  

900

0
100
200
300
400
500
600
700
800

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

CountMR MergeMR

Copy

(a) Log debugger

                  

250

0

50

100

150

200

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Pig - Dataset1

- Dataset1
- Dataset1

SearchMR Copy

Rout -Dataset1

(b) Log search

                  

4500

0
500

1000
1500
2000
2500
3000
3500
4000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

WeatherMR Copy

(c) Weather explorer

Figure 9. Breakdown of execution time - Dataset1

                  

1400

0

200

400

600

800

1000

1200

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

CountMR MergeMR
Copy

(a) Log debugger

                  

500

0

50

100

150

200

250

300

350

400

450

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rout - Dataset2 Pig - Dataset2

SearchMR Copy

(b) Log search

                  

9000

0
1000
2000
3000
4000
5000
6000
7000
8000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

WeatherMR Copy

(c) Weather explorer

Figure 10. Breakdown of execution time - Dataset2

execution, representing their individual execution times from
left to right in the order in which they occur in the respective
schedules. More precisely, PigLatin executes the script as a
single MapReduce job. Due to execution techniques detailed
in Section IV, Rrun executes the script as two MapReduce
jobs instead. The first MapReduce job (CountMR) deter-
mines the results for input in each individual datacenter.
The results are then copied to a single datacenter (Copy)
and merged using another MapReduce job (MergeMR).

As the figures illustrate, Rout performs the task more
efficiently than PigLatin – in only 86% of the time for the
smaller Dataset1 compared to PigLatin and in only 64% of
the time for the full dataset, Dataset2. This is mainly due
to two reasons: (1) since Rrun executes a part of the script
keeping input data GD, the amount of data that is copied
across datacenters is significantly smaller; (2) for executing
the count MapReduce job, Rrun employes Hadoop clusters

in both datacenters, significantly reducing total execution
time.

C. Log Search

The second script performs an advanced search operation,
again on HADOOPDATA (thus Dataset1 and Dataset2 are
the same as for the previous benchmark). The search can
be for specific records in the log files. In our example we
searched and listed the execution times of each MapReduce
job logged.

Both Rrun and PigLatin dataflow graphs consisted of a
single MapReduce job (SearchMR) but in the former case
the MapReduce job was executed while keeping input data
GD resulting in a MapReduce job being executed in each
of the Hadoop clusters. The results from the datacenters
can be considered together with no need for merging. The
corresponding execution times for Dataset1 and Dataset2

18000 200 400 600 800 1000 1200 1400 1600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(a) Log debugger

7000 100 200 300 400 500 600

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(b) Log search

90000 1000 2000 3000 4000 5000 6000 7000 8000

   

   

 

 

 

 

 

Execution Time (s)

 

Rout - Dataset1

Pig - Dataset1

Rout - Dataset2

Pig - Dataset2

(c) Weather explorer

Figure 8. Total execution time

                  

900

0
100
200
300
400
500
600
700
800

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

CountMR MergeMR

Copy

(a) Log debugger

                  

250

0

50

100

150

200

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Pig - Dataset1

- Dataset1
- Dataset1

SearchMR Copy

Rout -Dataset1

(b) Log search

                  

4500

0
500

1000
1500
2000
2500
3000
3500
4000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset1 Pig - Dataset1

WeatherMR Copy

(c) Weather explorer

Figure 9. Breakdown of execution time - Dataset1

                  

1400

0

200

400

600

800

1000

1200

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

CountMR MergeMR
Copy

(a) Log debugger

                  

500

0

50

100

150

200

250

300

350

400

450

Execution

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rout - Dataset2 Pig - Dataset2

SearchMR Copy

(b) Log search

                  

9000

0
1000
2000
3000
4000
5000
6000
7000
8000

Execution

Ex
ec

ut
io

n 
T

im
e 

(s
)

Rout - Dataset2 Pig - Dataset2

WeatherMR Copy

(c) Weather explorer

Figure 10. Breakdown of execution time - Dataset2

execution, representing their individual execution times from
left to right in the order in which they occur in the respective
schedules. More precisely, PigLatin executes the script as a
single MapReduce job. Due to execution techniques detailed
in Section IV, Rrun executes the script as two MapReduce
jobs instead. The first MapReduce job (CountMR) deter-
mines the results for input in each individual datacenter.
The results are then copied to a single datacenter (Copy)
and merged using another MapReduce job (MergeMR).

As the figures illustrate, Rout performs the task more
efficiently than PigLatin – in only 86% of the time for the
smaller Dataset1 compared to PigLatin and in only 64% of
the time for the full dataset, Dataset2. This is mainly due
to two reasons: (1) since Rrun executes a part of the script
keeping input data GD, the amount of data that is copied
across datacenters is significantly smaller; (2) for executing
the count MapReduce job, Rrun employes Hadoop clusters

in both datacenters, significantly reducing total execution
time.

C. Log Search

The second script performs an advanced search operation,
again on HADOOPDATA (thus Dataset1 and Dataset2 are
the same as for the previous benchmark). The search can
be for specific records in the log files. In our example we
searched and listed the execution times of each MapReduce
job logged.

Both Rrun and PigLatin dataflow graphs consisted of a
single MapReduce job (SearchMR) but in the former case
the MapReduce job was executed while keeping input data
GD resulting in a MapReduce job being executed in each
of the Hadoop clusters. The results from the datacenters
can be considered together with no need for merging. The
corresponding execution times for Dataset1 and Dataset2

Weather Explorer



Programmer Effort
Experiment FlumeJava Pig

Naïve Explicit DuctWork Naïve Explicit Rout
LoC K LoC K LoC K LoC K LoC K LoC K

Log debugger 5 7 11 14 6 8 6 15 13 26 7 18
Log search 3 4 8 9 4 5 3 7 8 13 4 8
Weather explorer 7 10 12 15 8 11 7 17 12 24 7 18
Weather top k count 5 8 11 14 6 10 6 17 11 23 7 20
Weather top k average 5 7 11 13 6 9 6 17 12 25 7 20

Table 3: Number of lines of code (LoC), number of keywords (K).

Experiment DuctWork/FlumeJava Rout/Pig
Compared To Naïve Compared To Explicit Compared To Naïve Compared To Explicit
LoC K LoC K LoC K LoC K

Log debugger +20% +28% �45% �43% +17% +20% �46% �31%
Log search +33% +25% �50% �44% +33% +14% �50% �38%
Weather explorer +14% +10% �33% �27% +0% +6% �42% �25%
Weather top k count +20% +25% �45% �28% +17% +18% �36% �15%
Weather top k average +20% +28% �45% �31% +17% +18% �42% �20%

Table 4: Percentage difference of LoC and K of DuctWork and Rout compared to naive and explicit handling of distribution in the
respective base languages.

DuctWork increases when the input size is increased (DSet1 to
DSet2), thus the relative cost benefits of using DuctWork become
even more significant on larger inputs. Also, our execution strategy
attempts to minimize execution time; an alternative strategy geared
at costs could achieve further improvements as the two are not al-
ways aligned [22].

4.4 Complexity
In Table 3 we gauge program complexity for our programs through

two measures: (1) the number of lines of code and (2) the number of
involved “keywords”. More precisely, for the latter we consider the
number of functions used in the case of FlumeJava/DuctWork (as
it is implemented as a library), the number of actual keywords for
Pig/Rout (which includes built-in operators). We omit any decla-
rations of data types. We compare DuctWork/Rout programs with
FlumeJava/Pig programs written to explicitly optimize execution
according to the given input data distribution (Explicit) and a naïve
FlumeJava/Pig program that assumes all data to be in a single dat-
acenter (Naïve).

Table 4 shows the percentage differences of the above two mea-
sures when programs of DuctWork/Rout are compared to naïve
and explicitly optimized versions of respective FlumeJava/Pig pro-
grams. Results clearly show that the code improvements of our
languages over explicit versions are much more substantial than
the costs of our languages over naïve versions.

The table shows that programs written using DuctWork/Rout use
fewer lines of code and keywords than the corresponding Explicit
versions of the FlumeJava/Pig programs being only slightly larger
than the corresponding Naïve versions of the FlumeJava/Pig pro-
grams written assuming all data to be located in a single datacenter.
Note that for the latter versions we did not include in the programs
the actual eager copying of data to a single datacenter.

4.5 Discussion
We believe that the significant performance improvements achieved

with DuctWork over FlumeJava with naïve copying outweigh the
modest increases in program complexity (at most one additional
LoC) with less distribution-agnostic collections across both con-

sidered languages. The main argument on the side of additional
transparency is that in all the investigated programs the same per-
formance could be achieved explicitly in DuctWork. However, this
might not always be the case in general. In addition, the best exe-
cution plan might differ across input datasets/dataset versions (cf.
B. in Section 2.3); in some cases copying upfront might indeed rep-
resent the most efficient execution plan [22]. Identifying the most
efficient one might go through implementing and comparing sev-
eral program versions. Last but not least, achieving an efficient
execution plan explicitly in a transparent model increases program
complexity substantially. When consolidation does not happen at
program start the resulting code is more complex in nature. This
complexity increases with the number of datasets and datacenters
involved. Inversely, the full backward compatibility of our solu-
tion(s) allow novice programmers to settle for less performance
without any added complexity.

In summary, we feel that the benefits of making (geo-)distribution
more explicit in big data analysis in terms of performance widely
outweigh the downsides in terms of increased program complexity.
While our empirical analysis has focused on geo-distribution only,
we believe that our results are also encouraging for other scenarios
where distribution matters, such as main memory big data process-
ing. In fact, in parallel efforts we have investigated the effect of the
characteristics of merge functions on performance of data aggrega-
tion: while existing systems such as Presto [] or the work of Yu et
al. [] use trees for aggregating data by applying merge functions in
several stages, they all use constant fanouts for such trees. As we
show in [35], function characteristics can be used to select an op-
timal fanout, leading to up to 10-fold speedups over a poor choice.
By avoiding the typical MapReduce disk I/O in such main memory
computations, bottlenecks namely are shifted to network I/O.

4.6 Threats to Validity
We have considered several threats to validity, discussed in the

following.
The benchmark programs have been inspired by other publica-

tions (e.g., [25] uses word count, top k, grep) and by the datasets
themselves, which have been made publicly available by represen-

Experiment FlumeJava Pig
Naïve Explicit DuctWork Naïve Explicit Rout

LoC K LoC K LoC K LoC K LoC K LoC K
Log debugger 5 7 11 14 6 8 6 15 13 26 7 18
Log search 3 4 8 9 4 5 3 7 8 13 4 8
Weather explorer 7 10 12 15 8 11 7 17 12 24 7 18
Weather top k count 5 8 11 14 6 10 6 17 11 23 7 20
Weather top k average 5 7 11 13 6 9 6 17 12 25 7 20

Table 3: Number of lines of code (LoC), number of keywords (K).

Experiment DuctWork/FlumeJava Rout/Pig
Compared To Naïve Compared To Explicit Compared To Naïve Compared To Explicit
LoC K LoC K LoC K LoC K

Log debugger +20% +28% �45% �43% +17% +20% �46% �31%
Log search +33% +25% �50% �44% +33% +14% �50% �38%
Weather explorer +14% +10% �33% �27% +0% +6% �42% �25%
Weather top k count +20% +25% �45% �28% +17% +18% �36% �15%
Weather top k average +20% +28% �45% �31% +17% +18% �42% �20%

Table 4: Percentage difference of LoC and K of DuctWork and Rout compared to naive and explicit handling of distribution in the
respective base languages.

DuctWork increases when the input size is increased (DSet1 to
DSet2), thus the relative cost benefits of using DuctWork become
even more significant on larger inputs. Also, our execution strategy
attempts to minimize execution time; an alternative strategy geared
at costs could achieve further improvements as the two are not al-
ways aligned [22].

4.4 Complexity
In Table 3 we gauge program complexity for our programs through

two measures: (1) the number of lines of code and (2) the number of
involved “keywords”. More precisely, for the latter we consider the
number of functions used in the case of FlumeJava/DuctWork (as
it is implemented as a library), the number of actual keywords for
Pig/Rout (which includes built-in operators). We omit any decla-
rations of data types. We compare DuctWork/Rout programs with
FlumeJava/Pig programs written to explicitly optimize execution
according to the given input data distribution (Explicit) and a naïve
FlumeJava/Pig program that assumes all data to be in a single dat-
acenter (Naïve).

Table 4 shows the percentage differences of the above two mea-
sures when programs of DuctWork/Rout are compared to naïve
and explicitly optimized versions of respective FlumeJava/Pig pro-
grams. Results clearly show that the code improvements of our
languages over explicit versions are much more substantial than
the costs of our languages over naïve versions.

The table shows that programs written using DuctWork/Rout use
fewer lines of code and keywords than the corresponding Explicit
versions of the FlumeJava/Pig programs being only slightly larger
than the corresponding Naïve versions of the FlumeJava/Pig pro-
grams written assuming all data to be located in a single datacenter.
Note that for the latter versions we did not include in the programs
the actual eager copying of data to a single datacenter.

4.5 Discussion
We believe that the significant performance improvements achieved

with DuctWork over FlumeJava with naïve copying outweigh the
modest increases in program complexity (at most one additional
LoC) with less distribution-agnostic collections across both con-

sidered languages. The main argument on the side of additional
transparency is that in all the investigated programs the same per-
formance could be achieved explicitly in DuctWork. However, this
might not always be the case in general. In addition, the best exe-
cution plan might differ across input datasets/dataset versions (cf.
B. in Section 2.3); in some cases copying upfront might indeed rep-
resent the most efficient execution plan [22]. Identifying the most
efficient one might go through implementing and comparing sev-
eral program versions. Last but not least, achieving an efficient
execution plan explicitly in a transparent model increases program
complexity substantially. When consolidation does not happen at
program start the resulting code is more complex in nature. This
complexity increases with the number of datasets and datacenters
involved. Inversely, the full backward compatibility of our solu-
tion(s) allow novice programmers to settle for less performance
without any added complexity.

In summary, we feel that the benefits of making (geo-)distribution
more explicit in big data analysis in terms of performance widely
outweigh the downsides in terms of increased program complexity.
While our empirical analysis has focused on geo-distribution only,
we believe that our results are also encouraging for other scenarios
where distribution matters, such as main memory big data process-
ing. In fact, in parallel efforts we have investigated the effect of the
characteristics of merge functions on performance of data aggrega-
tion: while existing systems such as Presto [] or the work of Yu et
al. [] use trees for aggregating data by applying merge functions in
several stages, they all use constant fanouts for such trees. As we
show in [35], function characteristics can be used to select an op-
timal fanout, leading to up to 10-fold speedups over a poor choice.
By avoiding the typical MapReduce disk I/O in such main memory
computations, bottlenecks namely are shifted to network I/O.

4.6 Threats to Validity
We have considered several threats to validity, discussed in the

following.
The benchmark programs have been inspired by other publica-

tions (e.g., [25] uses word count, top k, grep) and by the datasets
themselves, which have been made publicly available by represen-



Outline
• Big data background 

• Geo-distribution motivation 

• Geo-distributed tasks 

• Geo-distributed workflows 

• Conclusions and outlook



Conclusions
• Unlikely all data in the world will ever be in 1 

datacenter 

• Communication latency related to distance 

• Geographical constraints matter 

• Operating closer to data pays off in most cases 

• Beyond the atmosphere - fog computing



Future Work
• Optimization  

• DTGs/G-MR 

• Heuristics to further reduce complexity 

• Higher-degree polynomials for approximation 

• Rout reconciliation 

• Fine granularity of DTG offline optimization 

• Simple Rout heuristic considering online resource usage



Yet More Future Work
• Model and expressiveness 

• Flume Java/Ductwork 

• Iterative and incremental jobs, main-memory datastructs, cf. Flink, Spark 

• Optimal aggregation [Culhane et al.;HotCloud’14], [Culhane et 
al.;INFOCOM’15] 

• UDFs 

• Security 

• Integrity, availability, and isolation [Stephen&Eugster;Middleware’13] 

• Confidentiality [Stephen et al.;HotCloud’14], [Stephen et al.;ASE’14]



Next Week

• Resource management 

• Security


