Resource
Management

Patrick Eugster
Purdue University and TU Darmstadt

Outline

Context

Resource management concept
Example: YARN

Example: Borg

Conclusions

Outline

- Context

Resource management concept
Example: YARN
Example: Borg

Conclusions

Context

» Consider Hadoop executing map and reduce tasks for different jobs

e The Hadoop runtime is deployed on a cluster of n nodes

 Which node to deploy some new task fon?

Context

» Consider Hadoop executing map and reduce tasks for different jobs
e The Hadoop runtime is deployed on a cluster of n nodes

* Which node to deploy some new task ton?

5\

Context

» Consider Hadoop executing map and reduce tasks for different jobs
e The Hadoop runtime is deployed on a cluster of n nodes

* Which node to deploy some new task ton?

5\

Context

» Consider Hadoop executing map and reduce tasks for different jobs
e The Hadoop runtime is deployed on a cluster of n nodes

* Which node to deploy some new task ton?

5\
¥
F

4}?

Context

» Consider Hadoop executing map and reduce tasks for different jobs
e The Hadoop runtime is deployed on a cluster of n nodes

* Which node to deploy some new task ton?

5\
¥

/
- 5 v =

4}?

- -

Context

« Consider Hadoop executing map and reduce tasks for different jobs

e The Hadoop runtime is deployed on a cluster of n nodes

« Which node to deploy some new task ton’?

fF \

Simple Solutions®

* \WWhy not simply round-robin?

Simple Solutions®

* \WWhy not simply round-robin?

e Tasks have different execution times

 E.g., even mappers of same MR job can have
very different execution times due to data skew

e Tasks have different resource requirements
 E.g., “"CPU bound” vs “memory bound”

 Nodes can have different HW configurations

Requirements

« Best usage of computational resources on cluster of heterogenous nodes for
heterogenous jobs

« Yet another scheduling problem?

* Yes, but a complex one

Multi-dimensional: CPU, RAM, HD, (NW)) ...

Multi-tenancy: different applications, in cloud also users

Fault tolerance (cluster nodes, app components, resource management
components, ...)

Security (...)

Outline

- Resource management concept
« Example: YARN
 Example: Borg

e Conclusions

Resource Management

» Typically implemented by a system deployed across nodes of a cluster
» Layer below “frameworks” like Hadoop
* On any node, the system keeps track of availabilities

« Applications on top use information and estimations of own requirements to choose
where to deploy something

* RM systems (RMSs) differ in abstractions/interface provided and actual

scheduling decisions
Batch JInteract. § Iterative | Stream Graph
Hadoop | Tez Flink Storm Clig=Tolg

Resource Management System

Distributed File System

RMS Interfaces

Batch Interact. lterative J StreamSt Graph
Hadoop Tez Flink orm Giraph

Resource Management System

Distributed File System

* “Resource manager” (RM) interface

* For applications to know where to deploy
* “Execution” interface
* How to deploy application components
* E.g.ssh
» Execution is often managed by RMS
* “Container” model (cf. app server)

* Benefits: monitoring progress, debugging, fine-grained RM, fault tolerance, security

RMS Interfaces

Batch Interact. lterative J StreamSt Graph
Hadoop Tez Flink orm Giraph

Resource Management System

Distributed File System

* “Resource manager” (RM) interface

* For applications to know where to deploy
* “Execution” interface
* How to deploy application components
* E.g.ssh
» Execution is often managed by RMS
* “Container” model (cf. app server)

* Benefits: monitoring progress, debugging, fine-grained RM, fault tolerance, security

Scheduling

* Assignment of resources to applications/application instances

* Many different algorithms for scheduling based on different
objectives

* FIFO
* Some notion of fairness
 Max overall usage
e Internal or external (application) or mix

* E.g. priorities

RM Interface and
Architectures

* Interaction model
« “Offer”: RM tells applications about available resources
* “Pull”: application asks RM for resources, subsequently deploys
e Sync vs async

* “Push”: application directly submits request with resource description and
task description (container)

e Coordination model
* Via (logically centralized) resource manager “server” (“internal scheduling”)

* Peer-based by interaction with individual nodes (“external scheduling”)

Fault Tolerance

* Node crashes?
* Few RMSs provide support for this
» Replication: costly and restrictive (e.g. determinism)
* Checkpointing: application-specific
» Application component failures?
* Due to OS etc. (not application code): see above
* Due to application code: debugging information
 RMS component failures?
* State can be restored from nodes

» Unavailable to application

Security

o What if the RMS is compromised?

 E.g. can claim that resources are out
e “Denial of service” (availability)
e Orinversely “make up” resources

* |f manages container deployment
* Modify containers, tamper with execution and data (code/data integrity)
* Inspect them or leak data (code/data privacy)

o .7

e \ery little to no support so far

RMS Examples

* Grid
» Condor/HTCondor
* Sun Grid Engine

e Cloud

» Apache Mesos (Berkeley)

Apache YARN — vet another resource manager (Yahoo!)

Omega, Kubernetes, Borg (Google)

Apache Helix (LinkedlIn)

Fuxi (Alibaba)
* Tupperware (Facebook)
* Other
* Apache Myriad: mediate between YARN and Mesos

* |lama: mediate between YARN and Impala (Cloudera)

Apache Mesos

Berkeley, 2007
* Designed for global cluster management
Two-level scheduling
1. "Application”-level, pluggable
2. Arbitration between different 1.
Offers resources to applications, which accept/decline

No security, FT for master (hot standby)

Overview

http://mesos.apache.org/documentation/latest/architecture/

Hadoop MPI ZooKeeper
scheduler scheduler quorum
""r _______________)
Mesos i Standby 5
mt'\ _master_|
Mesos Agent Mesos Agent Mesos Agent
Hadoop MPI Hadoop || MPI
executor executor executor||executor

task | task | task task

Resource Offering

Framework 1 Framework 2
Job1 | Job2 Job1 | Job?2
FW Scheduler FW Scheduler
<s1, 4cpu, 4gb, . > (2 \@ :I:ii; 21 fggﬁ QSEj 4]
—% -
Allocation Mesos
module master
un g
<s1, 4cpu, 4gb, ... > (1 '@«m, task1, 2cpu, 1gb, ... >]
<fw1, task2, 1cpu, 2gb, ... >
S B gentl . Agent 2
i- __Executor i Executor
| [_-[3_35_:[_1:_3_3'_(_: i Task || Task

Apache YARN

Originally designed for Hadoop by Yahoo!
 Now used for others, e.qg., Storm, Spark
Single level scheduling, request-based

Distinguishes application masters from generic app
components

No security or FT

Overview

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

MapReduce Status ———»

Job Submission ------ >
Node Status s >
Resource Request ---------. »-

Borg

http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

P Z

[oommand-line]] [web browsers]]

tools /

* Programs submit jobs coriig
which have multiple tasks @M)

e Task are fine-grained (no . P rehwf'f
VMS) checkder [— ‘fg;i‘gg; o
mksara | |}
* Borg master replicated — \\\)
using Paxos a3l =l =

—
1 D)/
g /IU |

e Security via chroot and
borgssh

More than just an RMS

management of job submit+) reject

e Sophisticated T
and task execution acce,,

[Pending] update

evict lschedule

e Chubby used to

fail, kill,

| i update
persist state of tasks, ost [Running) v

|n’[erac’[|on mfo submit lfinish, fail, kill, lost
[Dead]
* Apps interact with i

tasks via RPC

Conclusions

 RMS represents core abstraction layer in clouds
 Still much work needed, e.g.,

 FT & security support

* Network provisioning in addition to local
resources

* E.g. via traffic engineering in software defined
networking (SDN)

