
Resource
Management

Patrick Eugster
Purdue University and TU Darmstadt

1

Outline
• Context

• Resource management concept

• Example: YARN

• Example: Borg

• Conclusions

2

Outline
• Context

• Resource management concept

• Example: YARN

• Example: Borg

• Conclusions

3

Context
• Consider Hadoop executing map and reduce tasks for different jobs

• The Hadoop runtime is deployed on a cluster of n nodes

• Which node to deploy some new task t on?

?t

Context
• Consider Hadoop executing map and reduce tasks for different jobs

• The Hadoop runtime is deployed on a cluster of n nodes

• Which node to deploy some new task t on?

?t

Context
• Consider Hadoop executing map and reduce tasks for different jobs

• The Hadoop runtime is deployed on a cluster of n nodes

• Which node to deploy some new task t on?

?t

Context
• Consider Hadoop executing map and reduce tasks for different jobs

• The Hadoop runtime is deployed on a cluster of n nodes

• Which node to deploy some new task t on?

?t

Context
• Consider Hadoop executing map and reduce tasks for different jobs

• The Hadoop runtime is deployed on a cluster of n nodes

• Which node to deploy some new task t on?

?t

Context
• Consider Hadoop executing map and reduce tasks for different jobs

• The Hadoop runtime is deployed on a cluster of n nodes

• Which node to deploy some new task t on?

?t

Simple Solutions?
• Why not simply round-robin?

Simple Solutions?
• Why not simply round-robin?

• Tasks have different execution times

• E.g., even mappers of same MR job can have
very different execution times due to data skew

• Tasks have different resource requirements

• E.g., “CPU bound” vs “memory bound”

• Nodes can have different HW configurations

Requirements
• Best usage of computational resources on cluster of heterogenous nodes for

heterogenous jobs

• Yet another scheduling problem?

• Yes, but a complex one

• Multi-dimensional: CPU, RAM, HD, (NW,) …

• Multi-tenancy: different applications, in cloud also users

• Fault tolerance (cluster nodes, app components, resource management
components, …)

• Security (…)

• …

Outline
• Context

• Resource management concept

• Example: YARN

• Example: Borg

• Conclusions

7

Resource Management
• Typically implemented by a system deployed across nodes of a cluster

• Layer below “frameworks” like Hadoop

• On any node, the system keeps track of availabilities

• Applications on top use information and estimations of own requirements to choose
where to deploy something

• RM systems (RMSs) differ in abstractions/interface provided and actual
scheduling decisions

Distributed File System

Resource Management System

Batch
Hadoop

Interact.
Tez

Iterative
Flink

Stream
Storm

Graph
Giraph…

RMS Interfaces

• “Resource manager” (RM) interface

• For applications to know where to deploy

• “Execution” interface

• How to deploy application components

• E.g. ssh

• Execution is often managed by RMS

• “Container” model (cf. app server)

• Benefits: monitoring progress, debugging, fine-grained RM, fault tolerance, security

Distributed File System

Resource Management System

Batch
Hadoop

Interact.
Tez

Iterative
Flink

StreamSt
orm

Graph
Giraph…

RMS Interfaces

• “Resource manager” (RM) interface

• For applications to know where to deploy

• “Execution” interface

• How to deploy application components

• E.g. ssh

• Execution is often managed by RMS

• “Container” model (cf. app server)

• Benefits: monitoring progress, debugging, fine-grained RM, fault tolerance, security

Distributed File System

Resource Management System

Batch
Hadoop

Interact.
Tez

Iterative
Flink

StreamSt
orm

Graph
Giraph…

Scheduling
• Assignment of resources to applications/application instances

• Many different algorithms for scheduling based on different
objectives

• FIFO

• Some notion of fairness

• Max overall usage

• Internal or external (application) or mix

• E.g. priorities

RM Interface and
Architectures

• Interaction model

• “Offer”: RM tells applications about available resources

• “Pull”: application asks RM for resources, subsequently deploys

• Sync vs async

• “Push”: application directly submits request with resource description and
task description (container)

• Coordination model

• Via (logically centralized) resource manager “server” (“internal scheduling”)

• Peer-based by interaction with individual nodes (“external scheduling”)

Fault Tolerance
• Node crashes?

• Few RMSs provide support for this

• Replication: costly and restrictive (e.g. determinism)

• Checkpointing: application-specific

• Application component failures?

• Due to OS etc. (not application code): see above

• Due to application code: debugging information

• RMS component failures?

• State can be restored from nodes

• Unavailable to application

Security
• What if the RMS is compromised?

• E.g. can claim that resources are out

• “Denial of service” (availability)

• Or inversely “make up” resources

• If manages container deployment

• Modify containers, tamper with execution and data (code/data integrity)

• Inspect them or leak data (code/data privacy)

• …?

• Very little to no support so far

RMS Examples
• Grid

• Condor/HTCondor

• Sun Grid Engine

• Cloud

• Apache Mesos (Berkeley)

• Apache YARN — yet another resource manager (Yahoo!)

• Omega, Kubernetes, Borg (Google)

• Apache Helix (LinkedIn)

• Fuxi (Alibaba)

• Tupperware (Facebook)

• Other

• Apache Myriad: mediate between YARN and Mesos

• Llama: mediate between YARN and Impala (Cloudera)

Apache Mesos
• Berkeley, 2007

• Designed for global cluster management

• Two-level scheduling

1. “Application”-level, pluggable

2. Arbitration between different 1.

• Offers resources to applications, which accept/decline

• No security, FT for master (hot standby)

Overview
http://mesos.apache.org/documentation/latest/architecture/

Resource Offering

Apache YARN
• Originally designed for Hadoop by Yahoo!

• Now used for others, e.g., Storm, Spark

• Single level scheduling, request-based

• Distinguishes application masters from generic app
components

• No security or FT

Overview
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Borg
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf

• Programs submit jobs
which have multiple tasks

• Task are fine-grained (no
VMs)

• Borg master replicated
using Paxos

• Security via chroot and
borgssh

More than just an RMS
• Sophisticated

management of job
and task execution

• Chubby used to
persist state of tasks,
interaction info

• Apps interact with
tasks via RPC

come and go, and many end-user-facing service jobs see a
diurnal usage pattern. Borg is required to handle all these
cases equally well.

A representative Borg workload can be found in a publicly-
available month-long trace from May 2011 [80], which has
been extensively analyzed (e.g., [68] and [1, 26, 27, 57]).

Many application frameworks have been built on top of
Borg over the last few years, including our internal MapRe-
duce system [23], FlumeJava [18], Millwheel [3], and Pregel
[59]. Most of these have a controller that submits a master
job and one or more worker jobs; the first two play a similar
role to YARN’s application manager [76]. Our distributed
storage systems such as GFS [34] and its successor CFS,
Bigtable [19], and Megastore [8] all run on Borg.

For this paper, we classify higher-priority Borg jobs as
“production” (prod) ones, and the rest as “non-production”
(non-prod). Most long-running server jobs are prod; most
batch jobs are non-prod. In a representative cell, prod jobs
are allocated about 70% of the total CPU resources and rep-
resent about 60% of the total CPU usage; they are allocated
about 55% of the total memory and represent about 85% of
the total memory usage. The discrepancies between alloca-
tion and usage will prove important in §5.5.

2.2 Clusters and cells
The machines in a cell belong to a single cluster, defined by
the high-performance datacenter-scale network fabric that
connects them. A cluster lives inside a single datacenter
building, and a collection of buildings makes up a site.1
A cluster usually hosts one large cell and may have a few
smaller-scale test or special-purpose cells. We assiduously
avoid any single point of failure.

Our median cell size is about 10 k machines after exclud-
ing test cells; some are much larger. The machines in a cell
are heterogeneous in many dimensions: sizes (CPU, RAM,
disk, network), processor type, performance, and capabili-
ties such as an external IP address or flash storage. Borg iso-
lates users from most of these differences by determining
where in a cell to run tasks, allocating their resources, in-
stalling their programs and other dependencies, monitoring
their health, and restarting them if they fail.

2.3 Jobs and tasks
A Borg job’s properties include its name, owner, and the
number of tasks it has. Jobs can have constraints to force
its tasks to run on machines with particular attributes such as
processor architecture, OS version, or an external IP address.
Constraints can be hard or soft; the latter act like preferences
rather than requirements. The start of a job can be deferred
until a prior one finishes. A job runs in just one cell.

Each task maps to a set of Linux processes running in
a container on a machine [62]. The vast majority of the
Borg workload does not run inside virtual machines (VMs),

1 There are a few exceptions for each of these relationships.

because we don’t want to pay the cost of virtualization.
Also, the system was designed at a time when we had a
considerable investment in processors with no virtualization
support in hardware.

A task has properties too, such as its resource require-
ments and the task’s index within the job. Most task proper-
ties are the same across all tasks in a job, but can be over-
ridden – e.g., to provide task-specific command-line flags.
Each resource dimension (CPU cores, RAM, disk space,
disk access rate, TCP ports,2 etc.) is specified independently
at fine granularity; we don’t impose fixed-sized buckets or
slots (§5.4). Borg programs are statically linked to reduce
dependencies on their runtime environment, and structured
as packages of binaries and data files, whose installation is
orchestrated by Borg.

Users operate on jobs by issuing remote procedure calls
(RPCs) to Borg, most commonly from a command-line tool,
other Borg jobs, or our monitoring systems (§2.6). Most job
descriptions are written in the declarative configuration lan-
guage BCL. This is a variant of GCL [12], which gener-
ates protobuf files [67], extended with some Borg-specific
keywords. GCL provides lambda functions to allow calcula-
tions, and these are used by applications to adjust their con-
figurations to their environment; tens of thousands of BCL
files are over 1 k lines long, and we have accumulated tens
of millions of lines of BCL. Borg job configurations have
similarities to Aurora configuration files [6].

Figure 2 illustrates the states that jobs and tasks go
through during their lifetime.

submit +
accept

Pending

Running

Dead

update

schedule

update

finish, fail, kill, lostsubmit

fail, kill,
lost

evict

reject

Figure 2: The state diagram for both jobs and tasks. Users can
trigger submit, kill, and update transitions.

A user can change the properties of some or all of the
tasks in a running job by pushing a new job configuration
to Borg, and then instructing Borg to update the tasks to
the new specification. This acts as a lightweight, non-atomic
transaction that can easily be undone until it is closed (com-
mitted). Updates are generally done in a rolling fashion, and
a limit can be imposed on the number of task disruptions

2 Borg manages the available ports on a machine and allocates them to tasks.

Conclusions
• RMS represents core abstraction layer in clouds

• Still much work needed, e.g.,

• FT & security support

• Network provisioning in addition to local
resources

• E.g. via traffic engineering in software defined
networking (SDN)

