
Secure Big Data
Processing

Patrick Eugster
Purdue University and TU Darmstadt

1

Outline

• Context

• Availability and integrity in big data analytics

• Privacy in big data analytics

• Conclusions and outlook

2

Outline

• Context

• Availability and integrity in big data analytics

• Privacy in big data analytics

• Conclusions and outlook

3

Secure Big Data?
• Big data analytics is commonly performed in 3rd-

party cloud datacenters (DCs)

• Geo-distribution exacerbates security issues

• Multi-tenancy issue even in single cloud DCs

• Successful tampering with application X may
yield access to app Y

4

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Cloud Computing

Assurance
• Multi-faceted problem including

• Availability

• Integrity

• Code: mission-critical, e.g., government, business processes, CPS, disaster
response

• Data: similar

• Privacy

• Data: confidential, e.g., government, personal

• Code: competitive, e.g., algorithmic trading and business processes

• …

6

Existing Work
• Communication-centric: focus on exchanged messages

• Firewalls, etc. - perimeter security

• Data-centric: mostly data at rest

• Access control/“differential privacy” (e.g., Airavat [Roy et al.;NSDI’10]),
encrypted storage (e.g., DepSky [Bessani et al.;Eurosys’11]), etc.

• Homomorphic encryption (e.g., [Gentry;STOC’09])

• Partial (e.g., CryptDB [Popa et al.;CACM’12], MrCrypt [Lesani et
al.;OOPSLA’13])

• Computation-centric: generating “correct” results

• Functional encryption, proof-based computation (e.g. Ginger [Setty et
al.;S&P’12])

7

Outline

• Context

• Availability and integrity in big data analytics

• Privacy in big data analytics

• Conclusions and outlook

8

Problem Statement

• How to prevent an attacker from tampering with
computations?

• Cryptographic primitives such as zero-knowledge
proofs costly (e.g. Ginger [Setty et al.;S&P’12])

Problem

Problem

Problem

Problem

Problem

Problem

Problem

Problem

f, A

Problem

f, A

f (A)

Problem

f, A

f (A)

Problem

f, A

f (A)

Problem

f, A

f (A) g (B)

Zero Knowledge Proofs

Zero Knowledge Proofs

Zero Knowledge Proofs

Zero Knowledge Proofs

Zero Knowledge Proofs

Zero Knowledge Proofs

Zero Knowledge Proofs

Zero Knowledge Proofs

f, A (U,C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

g (B)
P?

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

g (B)
P?
f (A)

P(f (A)) (U, C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

g (B)
P?
f (A)

P(f (A)) (U, C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

g (B)
P?
f (A)

P(f (A)) (U, C)

Zero Knowledge Proofs

f, A (U,C)

f (A)
P(f (A)) (U, C)

g (B)
P?
f (A)

P(f (A)) (U, C)

g ?

Byzantine Fault Tolerance
• Protect “computation” with BFT [Lamport, Shostak,

Pease;TOPLAS’82] replication

• Processes (state machines) with benign and malicious
failures

• 3f +1 replicas for f failures in asynchronous distributed
systems

• Safety with f +1

• Liveness with 2f + 1 in synchronous system

• Comparison of outputs

12

BFT Replication

BFT Replication

BFT Replication

BFT Replication

BFT Replication

BFT Replication

BFT Replication

BFT Replication

f, A

BFT Replication

f, A

f, A

BFT Replication

f, A

f, A

f, A

BFT Replication

f, A

f, A

f, A f, A

BFT Replication

f, A

f, A

f, A f, A[f (A),
f (A),
f (A),
f (A)]

BFT Replication

f, A

f, A

f, A f, A[f (A),
f (A),
f (A),
f (A)]

BFT Replication

f, A

f, A

f, A f, A[f (A),
f (A),
f (A),
f (A)]

BFT Replication

f, A

f, A

f, A f, A[f (A),
f (A),
f (A),
f (A)]

[f (A),
g (B),
f (A),
f (A)]

BFT — Hammer or Nail?
• Why BFT?

• Masks faulty components (availability, integrity)

• Identifies faulty components (attribution, isolation)

• Solution higher up in protocol stack (interoperability, portability)

• Generic challenges of BFT

• Homogeneity: cloud providers have different OSs, OS versions/images,
ASLR standard

• Non-determinism: largely avoided by deterministic parallelization

• Agreement: only one “client”

14

Specific Challenges
• No monolithic server — each job runs on multiple

nodes

• Cf. Zyzzyva [Kotla et al.;SOSP’07], Upright
[Clement et al.;SOSP’09]

• Tasks may spawn multiple sub-tasks

• Size of data too high for naive agreement

15

ClusterBFT
[Stephen&Eugster;Middleware’13]
• Variable granularity replication

• Replication level configurable

• Trade overhead vs. guarantees

• Streaming and lazy validation

• No need to wait for (2)f+1

• Compare in background, continue optimistically

• Separation of duty with slim trust base

• Untrusted nodes compute

• Trusted nodes control

• Smart replica set overlapping

• Restore accuracy

job1_a

job1_b

job1_d

job1_c

job2_b
job2_a

Untrusted
cluster

16

Intuition

M1#

R1#

M2#

R2#

M3#

R3#

M1#

R1#

M2#

R2#

M3#

R3#

M1#

R1#

M2#

R2#

M3#

R3#

M1#

R1#

M2#

R2#

M3#

R3#

M1# M1#

M1# M1#

R1# R1#

R1# R1#

M2# M2#

M2# M2#

R2# R2#

R2# R2#

M3# M3#

M3# M3#

R3# R3#

R3# R3#

M1# M1#

M1# M1#

R1# R1#

R1# R1#

J1# J2#

J3#

J5#

J4#

J6#

J7#

BFT#Execu4on#Node#M###Mapper# R####Reducer# J####Mapreduce#Job#

Part#(i)# Part#(ii)# Part#(iii)#

Fig. 1: Part (i) shows a data-flow graph with 7 phases. (ii) focuses on n⇥m replication
of jobs J1, J2 and J3. (iii) shows clustered replication of J1, J2, J3 requiring only one
round of BFT consensus. For simplicity we only show one map and one reduce task
per MapReduce job.

program [25] funds several projects aiming at creating moving targets specif-
ically to further narrow this gap [27].

3.2 Challenges in Adopting BFT in the Cloud

Though intuitively BFT seems like a good match in many ways for ensuring
computation in the cloud, it has thus far not been adopted widely in such a
context due to a variety of open challenges:

C1. Scalability: Datasets are typically many magnitudes higher in cloud-based
programming than in previous scenarios. As BFT replication protocols hinge
on comparison of redundant outcomes, this translates to large overheads.

C2. Granularity: Data analysis scripts also tend to have multiple jobs where
output of one is fed to the second. This creates a job-chain in which a process
that was a server for one job acts as a client for the second job. Ideally, every
process is fine-grained and can be deployed dynamically. This means, näıve
BFT replication of each job will result in R = 3f + 1 replicas for each task,
with n⇥m communication [31] and synchronization after every stage. This
is illustrated by Figure 1. The left part (i) shows a Pig-style data-flow graph,
while the middle part (ii) illustrates the n⇥m interaction [31] occurring as a
result of replicating every node in the (sub)graph obtained after compilation
to MapReduce jobs: every edge corresponds here in fact corresponds to 4⇥4
interactions. This causes very high resource usage, limiting availability and
increasing cost for huge data-flows.

C3. Rigidity: Clouds represent very dynamic environments, being marketed to
meet instantaneous demands rather than having to over-provision constantly
to meet occasional spikes. This calls for solutions that are flexible and can
be adapted to some degree. The main knob to turn in BFT is the replication
degree, which however represents a coarse granularity: typically a replication
degree of 3f + 1 = 4 with f = 1 already leads to substantial overhead. The
next larger step, 3f + 1 = 7, to tolerate up to 2 failures already leads to
prohibitively larger overhead.

17

Architecture
Request Handler

Client

Untrusted
cluster

Trusted
Storage

Execution Tracker

Resource Manager

Execution Handler

Client Handler

Graph Analysis Engine

Job Initiator &Verifier

18

Components
• Request Handler

• Creates logical graph

• Automatically instruments and embeds validation

• Sets up inter and/or intra MR validation points

• Submits job to MR engine (modified Hadoop)

• Execution Handler

• Keeps track of execution progress

• Ensures cluster overlap

• Ensures task replicas do not overlap

19

Illustration
Load

Load

Filter

Join

Group

For Each

Store

Load

Load
Filter

Join

Validate

Group

For Each

Store

Validate

Validate

MapReduce boundary

Logical operation

20

Evaluation

• 11 node cluster (10 data nodes + 1 name node / job tracker)

• Twitter dataset

• Pig script counting number of followers for each user

0"
50"

100"
150"
200"
250"
300"

Pu
re
"Pi
g"

Fil
te
r"

Gr
ou
p"B
Y"

Pr
oje
ct"

F"&
"G
"

G"
&"
P"

F"&
"P"

F"&
"G
"&
"P"

Ti
m
e(
s)
"

Single"ExecuAon" BFT"ExecuAon"

Fig. 9: Latency of running Twitter Fol-
lower Analysis

0"

500"

1000"

1500"

2000"

Pure"
Pig"

Join" Project" Filter" J"&"F" J,"P"&"F"

TI
m
e"
(s
)"

Single"Execu?on" BFT"Execu?on"

Fig. 10: Digest computation overhead for
Twitter Two Hop Analysis

at di↵erent points of the respective jobs. In both graphs, Single Execution shows
the time taken by a single replica of the script and BFT Execution shows the
time taken by 4 replicas of the script to execute. BFT Execution also includes the
overhead of matching f + 1 digests generated by the replicas. Pure Pig shows
the baseline run with no verification points or replication. When digests are
computed at multiple points in the data-flow graph, it is abbreviated using the
first letter of the verification point. When digests are computed at multiple points
in the data-flow graph, it is abbreviated using the first letter of the verification
point. Figure 9 show a minimal overhead of 8% and worst case of 9%, 14% and
19% overhead with 1, 2 and 3 verification points respectively.

Table 3: ClusterBFT in the presence of Byzantine failures

r =2 r = 3, case 1 r = 3, case 2 r = 4
Measure C P C P C P C P

Latency (s) 1.6⇥ 2.1⇥ 1.1⇥ 1.1⇥ 1.6⇥ 2.1⇥ 1.1⇥ 1.1⇥
CPU time spent (ms) 3.5⇥ 4.1⇥ 3.1⇥ 3.1⇥ 4.5⇥ 6.2⇥ 4.2⇥ 4.2⇥
File read (Bytes) 3.6⇥ 4⇥ 2.6⇥ 3⇥ 4.7⇥ 6⇥ 3.6⇥ 4⇥
File write(Bytes) 3.4⇥ 4⇥ 2.4⇥ 3⇥ 4.7⇥ 6⇥ 3.4⇥ 4⇥
HDFS write (Bytes) 2⇥ 4⇥ 2⇥ 3⇥ 2⇥ 6⇥ 3⇥ 4⇥

6.2 Performance under Failures: IRTA Airline Tra�c Analysis

Next we look at ClusterBFT’s performance in the presence of node failures.
The input data-set for this evaluation is a 1.3GB subset of airline data-set pro-
vided by RITA [2]. We run a multi-store query outlined in [6] that finds the top
20 airports with respect to incoming flights, outgoing flights, and overall. The
data-flow graph for this script is shown in Figure 8 (iii). The evaluation is set
up for f = 1 and we show the benefits of ClusterBFT under various replica-
tion degrees with 2 verification points. We compare ClusterBFT (C in Table 3)
with modified version of Pig which verifies digest of the final output only and
not anywhere else in the data-flow graph (P in Table 3). The results are shown
in terms of a multiplier over a single run of standard Pig without replication
or digest computation. For both executions (C and P), one node was set up
to always produce commission failures resulting in an incorrect digest. Also for

21

Outline

• Context

• Availability and integrity in big data analytics

• Privacy in big data analytics

• Conclusions and outlook

22

Problem Statement
• How to ensure that data does not leak in the face of

tampering?

• Intruders, internal threats

• Holy grail — fully homomorphic encryption (FHE)

• Prohibitive costs in general case

• Fine-print in expressiveness

23

Fully Homomorphic
Encryption

Fully Homomorphic
Encryption

A

Fully Homomorphic
Encryption

A

Fully Homomorphic
Encryption

A f

Fully Homomorphic
Encryption

A f

Fully Homomorphic
Encryption

A f f (A)

Fully Homomorphic
Encryption

A
K

f f (A)

Fully Homomorphic
Encryption

A
K

f f (A)

Fully Homomorphic
Encryption

E (A, K)

A
K

f f (A)

Fully Homomorphic
Encryption

E (A, K)

A
K

f f (A)

Fully Homomorphic
Encryption

E (A, K)

A

f’

K
f f (A)

Fully Homomorphic
Encryption

E (A, K)

A

f’

K
f f (A)

Fully Homomorphic
Encryption

E (A, K)

A

f’

K
f f (A)

Fully Homomorphic
Encryption

E (A, K) f’ (E (A , K))

A

f’

K
f f (A)

Fully Homomorphic
Encryption

E (A, K) f’ (E (A , K))

A

f’

K K
f f (A)

Fully Homomorphic
Encryption

E (A, K) f’ (E (A , K))

A

f’

K K
f f (A)

Fully Homomorphic
Encryption

E (A, K)

 =D (f’ (E (A, K)))

f’ (E (A , K))

A

f’

K K
f f (A)

Fully Homomorphic
Encryption

E (A, K)

 =D (f’ (E (A, K)))

f’ (E (A , K))

A

f’

K K
f f (A)

Partially Homomorphic
Encryption (PHE)

• Some crypto systems can perform certain operations
“under encryption”,e.g.,

• Paillier [Paillier;EuroCrypt’99] ▶ AHE: ⊕ s.t. D(E(x1)
⊕ E(x2)) = x1 + x2

• Unpadded RSA [Rivest et al.;CACM’78], ElGamal
[ElGamal;ToIT’86]

▶ MHE: ⍟ s.t. D(E(x1) ⍟ E(x2)) = x1 * x2

• DET (=), OPE (<), SRCH

25

E

E

Privacy in Big Data Analytics
[Stephen et al.;HotCloud’14],[Stephen et al.;ASE’14]

• Intuition

• Can use multiple cryptosystems side-by-side

• Leverage parallelization (vs CryptDB [Popa et
al.;CACM’12], Monomi [Pu et al.;PVLDB’13],
Talos [Shafagh et al.;SenSys’15])

• Client-side completion or re-encryption (vs
MrCrypt [Lesani et al.;OOPSLA’13])

Crypsis Intuition

LOAD
(a:OPE, a:AHE)

LOAD
(b:MHE,c:MHE

b1 = MULTIPLY b * c
(b:MHE, c:MHE)

REENCRYPT
(b1:MHE ▹ AHE)

STORE d

STORE b1

MHE Encryption

Re-encryption

AHE/OPE Encryption

FILTER a > 5
(a:OPE)

a1 = ADD a + 10
(a:AHE)

d = ADD a1 + b1
(a1:AHE, b1:AHE)

27

Architecture Overview

Unencrypted
Database

Encryption
Service

Script
Transformation

Coordinator

Data

Pig
Script

Encrypted Data Encrypted
Database

Unmodified Pig
Service

Crypsis
UDFs

Trusted tier (Client) Untrusted tier (Server)

Transformed
Script

28

Script Transformation
• Generate data-flow graph (DFG)

• Nodes are relations (LOAD, FOREACH, …)

• Edges are data-flow between operators

• Generate map of expression trees (MET)

• Contains all expressions

• Keys are used to assign expressions to DFG

• Generate set of annotated fields (SAF)

• One entry for each 〈relation, field 〉 of script

• 〈relation, field 〉, parent, available encryptions, required encryptions

• Get available encryptions from lineage of field, required encryptions using MET

2. Infer encryption schemes. Using the input file names
used in the source script, the encryption service checks what
parts of the input data are already encrypted and stored in
the cloud. Some parts of the input data might already be
encrypted under multiple encryption schemes (to support
multiple operations) and other parts might not be avail-
able in the cloud at all. The encryption service maintains
an input data encryption schema which keeps track of this
mapping between plain text input data and encrypted data
available in the cloud. Based on the input data encryption
schema and the required encryption schemes inferred in the
previous step, the encryption service identifies the encryp-
tion schemes missing from the cloud.

3. Encrypt and send. Once the required encryption
schemes that are missing from the cloud is identified, the
encryption service loads the unencrypted data from local
storage, encrypts it appropriately and sends it to the cloud
storage. The encryption service makes use of several encryp-
tion schemes each implemented using di↵erent cryptosys-
tems. Implementation details of these encryption schemes
are presented in 5. Each of these encryption schemes has its
own characteristics. The first scheme is randomized (RAN)
encryption which does not support any operators, and is
intuitively, the most secure encryption scheme. The next
scheme is the deterministic (DET) encryption scheme which
allows equality comparisons over encrypted data. Order-
preserving encryption (OPE) scheme allows order compar-
isons using the order-preserving symmetric encryption [9].
Lastly, additive homomorphic encryption (AHE) allows ad-
ditions over encrypted data, and multiplicative homomor-
phic encryption (MHE) allows us to perform multiplications
over encrypted data.

4. Execute transformed script. When all required en-
crypted data are loaded in the cloud, the execution handler
issues a request to start executing the target script.

5. UDFs. SPR defines a set of pre-defined UDFs that
handle cryptographic operations. Such UDFs are used to
perform operations like additions and multiplications over
encrypted data. The target script calls these UDFs using
standard Pig Latin syntax as part of the script execution
process. 6. Re-encryption. During the target script ex-

ecution, intermediate data may be generated as operations
are performed. The encryption scheme of that data depends
on the last operation performed on that data. For example,
after an addition operation, the resulting sum is already
encrypted under AHE. If that intermediate data is subse-
quently involved in an operation that requires an encryption
scheme other than the one it is encrypted under (for exam-
ple multiplying the sum with another value requires MHE),
the operation cannot be performed. (The ability to apply
additions and multiplications in sequence is viewed as defin-
ing characteristic of FHE.) SPR handles this situation by
re-encrypting the intermediate data. Specifically, the inter-
mediate data is sent to the client where it can be securely
decrypted and then encrypted under the required encryption
scheme (for example the sum is re-encrypted under MHE),
before sent back to the cloud. Once the re-encryption is
complete, the execution of target script can proceed.

7. Results. Once the job is complete, the encrypted results
are sent to the client where they can be decrypted.

6FULSW�DQDO\VLV

(QFU\SWLRQ�
DQDO\VLV

6FULSW�
WUDQVIRUPDWLRQ

'$*0$)0(7

7DUJHW�
6FULSW

6RXUFH�
6FULSW

2XWSXW�(QFU\SWLRQ

,QSXW�'DWD�
(QFU\SWLRQ�6FKHPD

2SHUDQG�(QFU\SWLRQ

*HQHUDWHV

'DWD�$UWLIDFWV

3URJUDP�7UDQVIRUPDWLRQ
8VHV
8SGDWHV

Figure 2: Program transformation components and artifacts

4. PROGRAM ANALYSIS AND TRANSFOR-
MATION

In this section we give a high level overview of how Pig Latin
scripts are analyzed by SPR and transformed to enable ex-
ecution over encrypted input data.

4.1 Running example
We use the Pig Latin script shown in Listing 2 as a run-

ning example to explain the analysis and subsequent trans-
formation process. This script is representative of the most
commonly used relational operations in Pig Latin and allows
us to explain key features about SPR. The script loads two
input files: input1 with two fields and input2 with a single
field. The script then filters out all rows from input1 which
are less than or equal to 10 (Line 3). Lines 4 and 5 group
input1 by the first field and find the sum of the second field
for each group. Line 6 joins the sum per group with the
second input file input2 to produce the final result which is
stored into an output file out (Line 7).

1 A = LOAD ’input1’ AS (a0, a1);
2 B = LOAD ’input2’ AS (x0);
3 C = FILTER A BY a0 > 10;
4 D = GROUP C BY a1 ;
5 E = FOREACH D GENERATE group AS b0, SUM(C.a0)

AS b1;
6 F = JOIN E BY b0, B BY x0;
7 STORE F into ’out’;

Listing 2: Source Pig Latin script S1

4.2 Definitions
In order to describe our program analysis and transforma-

tion we first introduce the following definitions.

4.2.1 Map of expression trees (MET)
All the expressions that are part of the source script are

represented as trees and added to themap of expression trees
(MET) as values. The keys of the MET are simple literals
used to access these expression trees. Figure 3a shows the
MET for the Pig Latin script in Listing 2. Keys of the MET
are shown in square brackets. Note that operands that are

29

Example Transformation

A = LOAD ‘input1’ AS
 (a0, a1);

B = LOAD ‘input2’ AS (x0);
C = FILTER A BY a0 > 10;
D = GROUP C BY a1;

E = FOREACH D GENERATE group AS
 b0, SUM(C.a0) AS b1;

F = JOIN E BY b0, B BY x0;
STORE F INTO ‘out’;
 

A = LOAD ‘enc_input1’ AS

 (a0_ope, a0_ah, a1_det);
B = LOAD ‘enc_input2’ AS (x0_det);

C = FILTER A BY a0_ope > OPE(10);
D = GROUP C BY a1_det;
E = FOREACH D GENERATE group AS

 b0, ENCSUM(C.a0_ah) AS b1;
F = JOIN E BY b0, B BY x0_det;

STORE F INTO ‘out’;
 

30

Simple Re-Encryption
• Re-encryption required when

• Required encryption unavailable

• Incompatible operations, e.g., addition followed by multiplication

• Re-encryption conceptual

• Can continue on client side

• 17 PigMix II benchmarks

• Only script 8 requires re-encyption (averaging)

• 1 script gets by with same attribute in several cryptosystems

31

Evaluation (PigMix II)

• 11 EC2 large instances (2 CPUs, 3.75BB RAM)

• 5 GB data

• Average of 3x overhead (FHE can lead to 1000…s)

32

Crypsis Comparison

• 3 EC2 medium instances

• ~3x faster for 15Mio records

• Similar overall cost

as fast as cryptdb when only on 1 node,
because CPU dominated

33

Limitations
• Drawback of PHE based solutions

• Multiple users must share same key

• Dealing with multiple domains adds complexity, e.g., garbled circuits, re-encryption

• Transparent solutions rarely yield optimal performance

• Encrypting everything is costly

• Data specification

• Only owners of data can know which parts of their datasets can be shared, and to
what extent

• Queries

• Can be expressed only if structure of data and accessibility constraints are known

PECCARY (Privacy-preserving Efficient Cloud-
based Computation applying Re-Encryption)

• Specification language

• Structure of data

• Constraints on visibility of attributes

• Relationships between attributes

• Precise model of data types (e.g., 100 > value > 0)

• E.g., data owners specify which (aggregation) operations are supported on which attributes

• Query language/compilation

• Allow access requirements to be derived

• Allow feasibility to be matched with specification

• Optimization, especially reduction of re-encryption

Secure Data Types (SDTs)
• Sensitivity levels

• HIGH, LOW, NONE

• Accounts for different security guarantees offered by crypto systems, avoids unnecessary overhead

• Ranges and precision for data

• Positive/negative numbers

• Fixed ranges e.g. 0-100

• Decimal points for floats to preserve

• Enumerations

• Fixed set of values, e.g. enum{EUROPE, ASIA, AMERICA, AFRICA}

• Composite data types

• Values containing multiple parts, e.g. country code&local in phone #, year&month&day in date

composite[(4:int[+])-(2:int[range(1-12)])]

SDT Example
DEFINE Lineitem AS {

 orderkey: long[+],

 linenumber: long[+, unique],

 tax: double[2]<NONE>,

 price: double[2]<HIGH>,

 shipdate: composite[(4:int[+])-(2:int[range(1-12)])-
 (2:int[range(1-31)])],

 shipinstruct: enum{IN_PERSON, COLLECT_COD, RETURN, NONE},

 comment: chararray

 …

}  

Compilation Techniqes
• Expression rewriting, e.g.,

• SUBSTRING(shipdate, 0, 4) == `1994’ ->
shipdate.year == `1994’

• x, y >= 0; x + y > 0 -> x > 0 || y > 0

• ((a * b) + c) * d -> (a * b * d) + (c * d)

• Selective encryption, e.g.,

• NONE attributes

• (a+b)*c with non-sensitive c -> Paillier secondary
homomorphic property

Compilation Techniques
• Subexpression elimination, e.g. (TPC-H Q01)

• price*(1-discount) vs price*(1-discount)*(1+tax)

• SUM, AVG, COUNT vs SUM, COUNT; AVG = SUM/COUNT

• Efficient encryption, e.g.,

• Enum types with only DET and ORD -> (random) int values

• OPE -> DET

• unpadded RSA for AHE and ‘==‘

• Boneh-Dan-Goh [Boneh et al.;TCC’05] for (multiple) AHE followed by (one)
MHE

• Packing multiple values

Re-Encryption
• Why throw in the towel when you can…

– … complete computation on the client side?
– … re-encrypt on the client side?

• Or better yet generalize?
– Whenever hitting a PHE limit
– Apply heuristic to choose 1. or 2.

• Plus
– Caching of DET values
– Speculative re-encryption for DET

Table 2: Search constructions. NoDup: ciphertext does not
contain duplicate words. Rand: word order is randomized

Construction
Parameters match

NoDup Rand Exists Count Pattern

A T T 3 7 7

B F T 3 3 7

C F F 3 3 3

(any text) and “|” (or). peccary automatically selects the
most secure search construction that can satisfy the required
computation.

2.2 Threat Model
peccary provides strong data confidentiality guarantees

against a powerful adversarial model, assumed to have full
access to machines in the cloud. The adversary can have
root access to cloud servers, view the data and the query
code uploaded and observe the entire query execution. pec-
cary’s goal is to preserve confidentiality, but not integrity
or availability. Consequently, the adversary is assumed to
be passive (honest-but-curious) and cannot make changes in
the queries, results or data stored in the cloud.

2.3 System Design
Figure 1 shows the high level architecture of peccary.

peccary ensures the confidentiality of computations of sub-
mitted queries by transforming them into semantically equiv-
alent queries that operate over encrypted data. When a user
submits a query, the compiler transforms it into a remote
query and a local query. The remote query which operates
on encrypted data is deployed on the untrusted cloud. The
cloud runs an unmodified Apache Pig service [18] and uses
cryptographic user defined functions (UDFs) to perform se-
cure operations. The local query then decrypts the results of
the remote query and performs any remaining computations
on plaintext data.

Local Query
Executor

Service
provider

(Apache Pig)

Untrusted cloud

Re-encryption
service

Encrypted
database

Peccary
UDFs

Local Query

Peccary
compiler

 Results

 Encrypted data

 Encrypted
results

Remote query
over encrypted data

 Query

 Encrypted data

Figure 1: peccary architecture

Since PHE schemes allow computations with respect to
certain operations, it is possible that some parts of the query
cannot be executed in the cloud without giving away sensi-
tive information. To mitigate this limitation, peccary uses
a Client-side re-encryption service which is used to send a
small amount of data to the client, decrypt it, optionally
perform simple computations over it, encrypt it under an-
other crypto system and send the results back to the cloud,
so that computation can proceed.

In order to improve expressiveness and general perfor-
mance as well as to reduce the amount and extent of re-
encryption — applied näıvely re-encryption can induce high

Table 3: Overview of techniques

Technique category G1 G2 G3 G4 G5

Expression rewriting 3 3 3

Selective encryption 3 3

Subexpression elimination 3 3

E�cient encryption 3 3

Caching & speculative re-encryption 3

overheads — peccary’s compiler uses a set of compila-
tion techniques. Table 3 summarizes how these techniques
contribute to our high level goals, namely by (G1) enabling
queries not previously executable in a public cloud without
sacrificing confidentiality, (G2) reducing the amount of re-
encryption, (G3) accelerating re-encryption, (G4) reducing
the amount of computation, and (G5) reducing the amount
of encrypted data. Below, we give an intuition of the cate-
gories of techniques, and in later sections describe how they
are used in peccary.

Expression rewriting. peccary rewrites expressions in queries
in encryption-sensitive ways that reduce execution latency.
For example, if it is known that variables x and y are pos-
itive integers, we can rewrite x + y > 0 to x > 0 || y > 0.
The changed expression has the potential to eliminate ex-
pensive additive homomorphic encryption for x and y and
the need for re-encryption.

Selective encryption. peccary allows fields that do not con-
tain sensitive information to exist in plaintext in the cloud,
thus supporting more homomorphisms.

Subexpression elimination. Since peccary executes expres-
sions over encrypted data, the cost of recomputing common
subexpressions are compounded. We eliminate such subex-
pressions in our compilation phase.

E�cient encryption. peccary reduces the amount and size
of encrypted data by identifying situations where one field
is involved in multiple operations that can be supported by
the same crypto system or packing together multiple values
into a single encrypted value.

Caching and speculative re-encryption. peccary also caches
and pre-computes most frequently used encrypted values to
reduce the cost of re-encryption.

3. Secure Data Types
peccary utilizes a set of compilation techniques to im-

prove the expressiveness and performance of queries exe-
cuted on encrypted data. A cornerstone of these techniques
consists in peccary’s ability to define input data in ways
not typically allowed by conventional query languages.
In particular, peccary allows the definition of: (i) sensi-

tivity levels, (ii) ranges for data values, (iii) enumerations,
and (iv) composition of data types. These are captured by
our secure data types (SDTs) and leveraged by the pec-
cary compiler to substantially optimize analytical queries.
Table 4 cross-references our SDTs with the compilation tech-
niques that leverage them.

3.1 Sensitivity Level
Di↵erent crypto systems o↵er di↵erent security guaran-

tees. peccary captures this di↵erence by categorizing crypto

3

Benefits
Expression

rewriting
Selective

encryption
Subexpr.

elimination
Efficient

encryption

Caching and
speculative
encryption

Secure data
types ✔ ✔

Data range
and

precision
✔ ✔

Enumerated
type ✔

Composite
type ✔

Performance
• TPC-H

– 10GB plaintext
– Amazon EC2 (10 xlarge nodes)
– Only system to execute Q1 and Q15 entirely in the cloud

* Augmented to support (sub)string queries, floating points

Effectiveness

* Augmented to support (sub)string queries, floating points

with the server and in turn, the re-encryption server uses
multiple threads to handle these connections.

Finally, the local query executor is implemented as a pig
service running in local mode that executes the local query.
Similar to the cloud service, the local query executor has
access to a set of UDFs that it uses to decrypt the results of
the remote query which act as the input for the local query.

7. EVALUATION
In this section, we empirically assess the benefits of our

proposed abstractions and techniques. We evaluate pec-
cary on four di↵erent aspects. We first evaluate how valu-
able our compilation techniques are in improving expressive-
ness and e�ciency by examining how frequently they apply
in analytical queries. We then evaluate the performance of
peccary by comparing its execution time to executions on
plaintext in Pig and to the closest related system for com-
puting on encrypted data. We also examine how e↵ective
the proposed re-encryption heuristic is in executing queries
more e�ciently. Finally we evaluate scalability of peccary
when running queries on large volumes of data.

7.1 Experimental Setup
To evaluate peccary we use the following two standard

industry adopted-benchmarks:

1. TPC-H is a decision support benchmark comprised of
a set of 22 queries. These queries are designed to have
broad industry-wide relevance and be representative of
realistic decision support queries with a high degree of
complexity that give answers to critical business ques-
tions.

2. PigMix2 [3] is a set of queries used by Apache to test
performance of the Pig runtime. PigMix2 queries mea-
sure latency of various features like grouping, ordering,
projecting, di↵erent types of joins, or aggregation op-
erations. Data for PigMix2 is generated by an associ-
ated data generator tool which produces data with a
Zipfian distribution for grouping and join keys. Other
fields are generated using uniform data distribution.

We performed all our experiments using Amazon EC2 in-
stances. We used m4.large instances which have 2 virtual
CPUs and 8 GB of memory or m4.xlarge instances which
have 4 virtual CPUs and 16GB of memory to represent the
untrusted cloud. We also used an EC2 VM for the trusted/-
client machine, where the re-encryption service is run and
the final results are sent. While we retain the default EC2
network throughput for all nodes within the cloud (450Mbps
for m4.large instances and 750Mbps for m4.xlarge instances)
but cap the network bandwidth between cloud and that
client machine to 10Mbps.

To provide an insight on how the compilation techniques
of peccary improve performance over the state-of-the-art
approaches that perform computations over encrypted data,
we compare peccary to Crypsis [31]. Crypsis is a mod-
ified Pig Latin runtime that performs data flow analysis
and program transformations for Pig Latin scripts automat-
ically and transparently to enable their execution on en-
crypted data. Unlike peccary, Crypsis employs the greedy
re-encryption technique to handle operations that cannot
execute in the cloud. It also does not support all compu-
tations involved in our used benchmarks (e.g., substrings,

string patterns, floating point numbers). Thus we extend
Crypsis to handle such computations in order to enable a
comparison, and call this system Crypsis⇤. We note that
Crypsis⇤ does not include any of our compilation techniques
that lead to more optimized execution.
Similar to other PHE approaches [26, 33, 31], we assume

that data is already encrypted and securely stored in the
cloud, and hence do not include encryption latency in our
evaluations. We use HDFS as our storage medium with a
replication factor of 3. All reported execution times in the
experiments that follow are the average of 3 runs.

7.2 Compilation Techniques Applicability
We first analyze how applicable our proposed compilation

techniques are in TPC-H and PigMix2 benchmarks. Table 7
shows the number of scripts each compilation technique was
applicable to for both benchmarks.

Table 7: Technique applicability

of scripts

PigMix2 TPC-H

Expression Rewriting - 1

Selective Encryption 7 14

E�cient Encryption Strategy 2 20

Caching and Speculative Re-encryption - 6

Subexpression Elimination - 1

To evaluate the e↵ectiveness of our compilation techniques
in reducing the number of re-encryptions required to execute
queries, we use TPC-H to compare the number of queries
that require re-encryption to complete in Crypsis⇤ and in
peccary, and compare the total number of re-encryptions
involved too. Table 8 shows the results of this compari-
son. In Crypsis⇤, 18 out of 22 TPC-H queries require re-
encryption to complete with a total of 51 re-encryptions
involved in all 22 queries. In comparison, peccary com-
pilation techniques allow peccary to execute TPC-H with
only 6 queries requiring re-encryption for a total of 7 re-
encryptions in all 22 queries.

Table 8: E↵ectiveness of peccary techniques on reducing
re-encryptions in TPC-H

Crypsis⇤ peccary

of queries with re-encryption 18 6

Total # of re-encryptions 51 7

7.3 Execution Time
Executing queries over encrypted data provides confiden-

tiality in an untrusted cloud but due to the size overhead of
the encrypted data and the higher cost of applying opera-
tions on encrypted data, execution times are impacted. To
evaluate this overhead, we compare the execution time of
peccary with the plaintext execution and Crypsis⇤ in or-
der to assess the performance gains due to our compilation
techniques and the re-encryption heuristic on the TPC-H
and PigMix2 benchmarks.

TPC-H. We run TPC-H at scale factor 10, i.e., 10GB
of plaintext data. TPC-H data is divided across 8 tables
with a total of 61 fields. We selected 4 of these fields and

9

with the server and in turn, the re-encryption server uses
multiple threads to handle these connections.

Finally, the local query executor is implemented as a pig
service running in local mode that executes the local query.
Similar to the cloud service, the local query executor has
access to a set of UDFs that it uses to decrypt the results of
the remote query which act as the input for the local query.

7. EVALUATION
In this section, we empirically assess the benefits of our

proposed abstractions and techniques. We evaluate pec-
cary on four di↵erent aspects. We first evaluate how valu-
able our compilation techniques are in improving expressive-
ness and e�ciency by examining how frequently they apply
in analytical queries. We then evaluate the performance of
peccary by comparing its execution time to executions on
plaintext in Pig and to the closest related system for com-
puting on encrypted data. We also examine how e↵ective
the proposed re-encryption heuristic is in executing queries
more e�ciently. Finally we evaluate scalability of peccary
when running queries on large volumes of data.

7.1 Experimental Setup
To evaluate peccary we use the following two standard

industry adopted-benchmarks:

1. TPC-H is a decision support benchmark comprised of
a set of 22 queries. These queries are designed to have
broad industry-wide relevance and be representative of
realistic decision support queries with a high degree of
complexity that give answers to critical business ques-
tions.

2. PigMix2 [3] is a set of queries used by Apache to test
performance of the Pig runtime. PigMix2 queries mea-
sure latency of various features like grouping, ordering,
projecting, di↵erent types of joins, or aggregation op-
erations. Data for PigMix2 is generated by an associ-
ated data generator tool which produces data with a
Zipfian distribution for grouping and join keys. Other
fields are generated using uniform data distribution.

We performed all our experiments using Amazon EC2 in-
stances. We used m4.large instances which have 2 virtual
CPUs and 8 GB of memory or m4.xlarge instances which
have 4 virtual CPUs and 16GB of memory to represent the
untrusted cloud. We also used an EC2 VM for the trusted/-
client machine, where the re-encryption service is run and
the final results are sent. While we retain the default EC2
network throughput for all nodes within the cloud (450Mbps
for m4.large instances and 750Mbps for m4.xlarge instances)
but cap the network bandwidth between cloud and that
client machine to 10Mbps.

To provide an insight on how the compilation techniques
of peccary improve performance over the state-of-the-art
approaches that perform computations over encrypted data,
we compare peccary to Crypsis [31]. Crypsis is a mod-
ified Pig Latin runtime that performs data flow analysis
and program transformations for Pig Latin scripts automat-
ically and transparently to enable their execution on en-
crypted data. Unlike peccary, Crypsis employs the greedy
re-encryption technique to handle operations that cannot
execute in the cloud. It also does not support all compu-
tations involved in our used benchmarks (e.g., substrings,

string patterns, floating point numbers). Thus we extend
Crypsis to handle such computations in order to enable a
comparison, and call this system Crypsis⇤. We note that
Crypsis⇤ does not include any of our compilation techniques
that lead to more optimized execution.
Similar to other PHE approaches [26, 33, 31], we assume

that data is already encrypted and securely stored in the
cloud, and hence do not include encryption latency in our
evaluations. We use HDFS as our storage medium with a
replication factor of 3. All reported execution times in the
experiments that follow are the average of 3 runs.

7.2 Compilation Techniques Applicability
We first analyze how applicable our proposed compilation

techniques are in TPC-H and PigMix2 benchmarks. Table 7
shows the number of scripts each compilation technique was
applicable to for both benchmarks.

Table 7: Technique applicability

of scripts

PigMix2 TPC-H

Expression Rewriting - 1

Selective Encryption 7 14

E�cient Encryption Strategy 2 20

Caching and Speculative Re-encryption - 6

Subexpression Elimination - 1

To evaluate the e↵ectiveness of our compilation techniques
in reducing the number of re-encryptions required to execute
queries, we use TPC-H to compare the number of queries
that require re-encryption to complete in Crypsis⇤ and in
peccary, and compare the total number of re-encryptions
involved too. Table 8 shows the results of this compari-
son. In Crypsis⇤, 18 out of 22 TPC-H queries require re-
encryption to complete with a total of 51 re-encryptions
involved in all 22 queries. In comparison, peccary com-
pilation techniques allow peccary to execute TPC-H with
only 6 queries requiring re-encryption for a total of 7 re-
encryptions in all 22 queries.

Table 8: E↵ectiveness of peccary techniques on reducing
re-encryptions in TPC-H

Crypsis⇤ peccary

of queries with re-encryption 18 6

Total # of re-encryptions 51 7

7.3 Execution Time
Executing queries over encrypted data provides confiden-

tiality in an untrusted cloud but due to the size overhead of
the encrypted data and the higher cost of applying opera-
tions on encrypted data, execution times are impacted. To
evaluate this overhead, we compare the execution time of
peccary with the plaintext execution and Crypsis⇤ in or-
der to assess the performance gains due to our compilation
techniques and the re-encryption heuristic on the TPC-H
and PigMix2 benchmarks.

TPC-H. We run TPC-H at scale factor 10, i.e., 10GB
of plaintext data. TPC-H data is divided across 8 tables
with a total of 61 fields. We selected 4 of these fields and

9

Online Processing
• Same principles (transformation) can be applied online

• Implemented in Apache Storm (STYX — stream
processing with trustworthy cloud-based execution)

• Need to merge with corresponding optimizations

8QWUXVWHG�FORXG

6WUHDP�SURFHVVLQJ�DSSOLFDWLRQV

(QFU\SWHG�GDWD

7UXVWHG�7LHU

,R7�HQFU\SWLQJ�KDUGZDUH

(QFU\SWHG�GDWD

Figure 1: STYX overview

instance, the seminal CryptDB [32] was implemented
on top of MySQL, while MONOMI [37] and Talos [33]
were implemented on top of Postgres. These database-
centric solutions are not a good fit for many IoT applica-
tions because IoT applications are typically implemented
as continuous queries in a stream processing system.

A straightforward application of PHE to existing
stream processing solutions to support computations
over encrypted data is however unlikely to be practi-
cal: (G1) Dozens of PHE schemes exist, varying by
operations supported, efficiency, size of encrypted data
etc.; IoT application developers do not necessarily pos-
sess sufficient in-depth knowledge of crypto(graphic)
schemes to judiciously select among these. For resource-
constrained IoT devices, efficiency incurred by individ-
ual crypto systems is a major concern. (G2) Moreover,
encryption typically increases the size of input data, with
different factors for different crypto systems. Specific
optimizations are required to reduce this size difference
to make the solution practical. (G3) Furthermore, due
to the limitations of PHE schemes, special handling is
required for variable initializations and constants in a
program. (G4) With applications running continuously
and potentially infinitely, secret keys used for encryption
need to be updated periodically or on demand (e.g., when
there is a compromise). Such updates on the IoT de-
vices should be made transparently tothe IoT application
and should not lead streaming queries to miss results.
(G5) Processing continuous queries typically involves a
pipeline of computing tasks and each task may have one
or more instances running concurrently. The deployment
profile, which maps task instances to VMs in the cloud
should make balanced use of resources to avoid bottle-
necks. While some optimization heristics are known,
they do not consider encryption which shifts bottlenecks.
Finally, (G6) as hinted to by their names, PHE schemes
do not support arbitrary operations. Unsupported opera-
tions have to be performed on the trusted client side in a
plaintext form. Consequently, either the query process-
ing can continue on the trusted client side or the inter-
mediate results can be re-encrypted to the schemes re-
quired by subsequent operations and continued in the
cloud. Deployment profiles must be cognizant of such
re-encryptions.

This paper presents STYX, a novel programming ab-
straction and managed runtime system, that leverages
PHE to provide confidentiality for IoT applications dele-
gating online streaming jobs to the public cloud. STYX
operates on streaming data without revealing any plain-
text information to the untrusted cloud. Figure 1 gives a
high level overview of STYX. The users design, imple-
ment, and initiate the stream analysis program that runs
in the untrusted cloud. IoT sensors automatically encrypt
generated data before emitting them in the stream for
analysis. Additional streams of encrypted private data
required for analysis can be sent independently from a
trusted tier maintained by users.

To perform analytics in the untrusted cloud over en-
crypted data (whilst addressing G1-G6), STYX: (C1)
enables programmers to develop applications using the
STYX API for typical plaintext streams and automati-
cally transforms the application to work with encrypted
streams. This means the developer is free to focus on
application logic and not on the details of the underly-
ing crypto systems; (C2) handles variable initializations
and constants correctly through transformations; (C3)
utilizes PHE-specific optimization techniques (e.g., field
masking) to reduce encrypted data size and provides ef-
ficient implementation of these techniques so they can
run on IoT devices; (C4) supports transparent update of
secret keys on IoT devices; (C5) deduces the best way
to deploy an application through an analytical modeling
module; (C6) is capable of executing the remainder of
the computation in the trusted tier or re-encrypting a data
stream (or parts of it) to enable further computation in the
public cloud if a given sequence of computations cannot
be performed due to PHE limitations.

This paper makes the following contributions:

• We introduce a secure stream abstraction that exposes
a high level API through which programmers can ex-
press programs that can be executed in the public
cloud in a way preserving confidentiality without hav-
ing to know the details of underlying crypto systems.
We also introduce STYX, a system that support this
API and address related challenges.

• Describe how STYX analyzes programs written us-
ing the STYX API and identifies the computations
that can be executed purely on encrypted data and
the computations that cannot, due to the limitations
of PHE. STYX maximizes the amount of computa-
tion performed in the cloud by splitting computation
between the untrusted cloud and a small number of
trusted nodes while automatically performing required
re-encryptions. Fast serialization techniques and en-
cryption pre-computation are two techniques used to
assure the efficiency of STYX.

2

Linear Road Benchmark

Storm response times

STYX response times

Storm STYX

v6, v7 for re-encr.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2000 4000 6000 8000 10000

#
T

u
p

le
s/

S
e

c

Time (s)

Figure 7: LRB data profile

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2000 4000 6000 8000 10000

U
til

iz
a

tio
n

Time (s)

v1
v2
v3
v4
v5

Figure 8: Storm LRB baseline

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000

U
til

iz
a

tio
n

Time (s)

v1
v2
v3
v4
v5
v6
v7

Figure 9: STYX LRB baseline

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Figure 10: Response time for LRB on Storm

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Figure 11: Response time for LRB on STYX

0.27 0.28
0

50

100

150

200

DET MHE AHE

Ti
m

e
 (m

s)

PHE scheme

32 bit input 64 bit input

Figure 12: Encryption overhead for an IoT device

for Raspberry Pi version B. We measured the latency to
encrypt 16 bytes, a typical message size and the results
are shown in Figure 12. The encryption latency is accept-
able, as it is less than 150ms even for complex schemes
like AHE and MHE.

7.3 Application Case Studies
New York taxi statistics. This application finds the top
10 most frequent routes during the last 30 minutes of taxi
servicing. A route is represented by a starting grid cell
and an ending grid cell. The data for this application
is based on a data set released under FOIL (Freedom of
Information Law) and available at [3]. The input data
contains the locations (latitude and longitude) and times
of passenger pick ups, MD5 digest of the medallion of
the taxi that picked up the passenger, trip times and drop
off locations (latitude and longitude). We use a simpli-
fied version of this data which contains passenger pick
up time, drop off time, and route id. The dataset contains

records that span over a one year time frame. Whenever
the top 10 change, the output is appended. We use this
dataset to study the response time of STYX compared to
plaintext streams and also to identify how key changes
affect the response time. Response time is defined as
the time between an input tuple that triggers a change
in top 10 enters the system and when the top 10 corre-
sponding to that tuple is output. In order to evaluate how
response time is affected when a key change as outlined
in Section 4.2 is in progress, we initiate a key change at
the beginning of every month. This means any data that
is emitted with a time stamp within the first 30 minutes
of every month will be encrypted under the old and new
key. Table 6 summarizes the results of these runs. We can
see that STYX completes processing the data with only
an additional 25% time compared to the Storm running
on plaintext stream. Furthermore, the increase in com-
pletion time or response time caused by effecting a key
change every month is minimal (less than 1%). We also
show the response time for the full run with key changes
every month in Figure 13. In this graph we can see in-
termittent spikes (total of 12) in response time for some
tuples around the time a key change is in progress, but
the majority of the tuples (90th percentile within 31ms
and 99th percentile within 818ms) respond with the same
response time as when no change was in effect.

Heartbeat analysis. Now we study how STYX can
be used for a realistic, online application like a heart
beat monitor. The end user application runs on special-
ized hardware (the monitoring device) that is capable of

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2000 4000 6000 8000 10000

#
T

u
p
le

s/
S

e
c

Time (s)

Figure 7: LRB data profile

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2000 4000 6000 8000 10000

U
til

iz
a
tio

n

Time (s)

v1
v2
v3
v4
v5

Figure 8: Storm LRB baseline

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2000 4000 6000 8000 10000

U
til

iz
a
tio

n

Time (s)

v1
v2
v3
v4
v5
v6
v7

Figure 9: STYX LRB baseline

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Figure 10: Response time for LRB on Storm

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Figure 11: Response time for LRB on STYX

0.27 0.28
0

50

100

150

200

DET MHE AHE

Ti
m

e
 (m

s)

PHE scheme

32 bit input 64 bit input

Figure 12: Encryption overhead for an IoT device

for Raspberry Pi version B. We measured the latency to
encrypt 16 bytes, a typical message size and the results
are shown in Figure 12. The encryption latency is accept-
able, as it is less than 150ms even for complex schemes
like AHE and MHE.

7.3 Application Case Studies
New York taxi statistics. This application finds the top
10 most frequent routes during the last 30 minutes of taxi
servicing. A route is represented by a starting grid cell
and an ending grid cell. The data for this application
is based on a data set released under FOIL (Freedom of
Information Law) and available at [3]. The input data
contains the locations (latitude and longitude) and times
of passenger pick ups, MD5 digest of the medallion of
the taxi that picked up the passenger, trip times and drop
off locations (latitude and longitude). We use a simpli-
fied version of this data which contains passenger pick
up time, drop off time, and route id. The dataset contains

records that span over a one year time frame. Whenever
the top 10 change, the output is appended. We use this
dataset to study the response time of STYX compared to
plaintext streams and also to identify how key changes
affect the response time. Response time is defined as
the time between an input tuple that triggers a change
in top 10 enters the system and when the top 10 corre-
sponding to that tuple is output. In order to evaluate how
response time is affected when a key change as outlined
in Section 4.2 is in progress, we initiate a key change at
the beginning of every month. This means any data that
is emitted with a time stamp within the first 30 minutes
of every month will be encrypted under the old and new
key. Table 6 summarizes the results of these runs. We can
see that STYX completes processing the data with only
an additional 25% time compared to the Storm running
on plaintext stream. Furthermore, the increase in com-
pletion time or response time caused by effecting a key
change every month is minimal (less than 1%). We also
show the response time for the full run with key changes
every month in Figure 13. In this graph we can see in-
termittent spikes (total of 12) in response time for some
tuples around the time a key change is in progress, but
the majority of the tuples (90th percentile within 31ms
and 99th percentile within 818ms) respond with the same
response time as when no change was in effect.

Heartbeat analysis. Now we study how STYX can
be used for a realistic, online application like a heart
beat monitor. The end user application runs on special-
ized hardware (the monitoring device) that is capable of

11

Table 3: Description of continuous queries used for smart meter analytics

Query Output
Q1 #Readings Total number of readings for the given time window
Q2 Consumption Sum of total resource consumption for the given time window
Q3 Peak consumption Sorted list of the aggregate consumption per 10 seconds in the given window
Q4 Top consumers List of the distinct consumers, sorted by their total (monthly) consumption
Q5 Consumption series Time-series of aggregate consumption per 10 seconds in the given window
Q6 Billing Monthly bill for each consumer based on the time of usage

Input

v2
v1

v4

1

v3

2

3

5

v5

6

7
8

9 4

(a) Storm

3

(b) STYX

Figure 6: LRB graph

a LRB run (10784 seconds) on Storm with plaintext data
(see Figure 8) and on STYX with encrypted data (Fig-
ure 9). We can observe that in Figure 8 vertexes v4 and v2
have the highest utilization values until around the 8000s
mark, and after that vertex v1 becomes the node with
highest load. This increase is because the number of tu-
ples that require a toll notification increases substantially
after 8000s. In the transformed STYX graph, which ran
on encrypted data streams, v5 and v1 come under high
load until 8000s, and after that v1 becomes the primary
bottleneck. This validates our hypothesis that primary
bottlenecks differ between graphs running on plaintext
vs encrypted streams.

Performance of STYX deployment profile. Now we
benchmark both the Storm topology graph and the trans-
formed STYX graph using LRB. For this, both graphs
are deployed in the best possible configuration so that the
maximum number of highways supported can be iden-
tified. Table 4 show the results. For plaintext streams
Storm supports 20 expressways, while using STYX with
encrypted streams we are able to support 15 express-
ways.We also plot the response times for all notification trig-
gering tuples, which is the time taken for the notification
to be issued from the time the tuple enters the system.
The response times for STYX are shown in Figure 11
and the response times for Storm are shown in Figure 10.
Response times while running STYX peak faster than
Storm, but for 15 expressways STYX is able to main-
tain the response time below the threshold allowed by
the benchmark.

Table 4: LRB comparison

System L Time (ms)1 Profile2

Storm 20 2694.44 5,4,1,3,2
STYX 15 2672.97 5,2,1,2,3,1,1

1Average response time.
2 Deployment profile for vertexes in order
v1,v2,v3,v4,v5 for Storm and v1,v2,v3,v4,v5,v6,v7 for
STYX

Effectiveness of analytical model. The effectiveness
of the model can be evaluated by looking at how well
the model converts the deployment profile for the plain-
text streams to the deployment profile for the encrypted
streams in STYX. Referring back to Figures 8 and 9,
these graphs can also be used as a baseline to under-
stand the model presented in Section 5.1. Vertexes with
higher utilization value should get more instances to ex-
ecute them. Table 5 shows the response time of STYX
deployment profile of the Storm graph and correspond-
ing STYX graph. As can be seen, the deployment profile
generated by STYX results in lowest response time. This
profile is also in accordance with Figure 9 which shows
vertex v1 and v4 should get the highest number of in-
stances.

Table 5: LRB deployment profile response time

STYX deployment profile Response time (ms)
5,2,1,2,3,1,11 2672.97
4,2,1,4,2,1,1 2714.3
5,4,1,3,2,1,1 2781.4

1 Deployment profile generated by STYX

Encryption overhead of IoT device We evaluate the
overhead of encryption in IoT devices. Raspberry Pi [8]
is a widely popular IoT device and has the capabilities
similar to devices found in highway cameras and vehicle
tracking and telemetry devices. We implemented three
different crypto system namely, AHE, MHE, and DET

10

Table 3: Description of continuous queries used for smart meter analytics

Query Output
Q1 #Readings Total number of readings for the given time window
Q2 Consumption Sum of total resource consumption for the given time window
Q3 Peak consumption Sorted list of the aggregate consumption per 10 seconds in the given window
Q4 Top consumers List of the distinct consumers, sorted by their total (monthly) consumption
Q5 Consumption series Time-series of aggregate consumption per 10 seconds in the given window
Q6 Billing Monthly bill for each consumer based on the time of usage

(a) Storm

Input

v2v1

v4

1

v3

4

2

3
5

v5

9

10
11

v7
v6

7
8

6

(b) STYX

Figure 6: LRB graph

a LRB run (10784 seconds) on Storm with plaintext data
(see Figure 8) and on STYX with encrypted data (Fig-
ure 9). We can observe that in Figure 8 vertexes v4 and v2
have the highest utilization values until around the 8000s
mark, and after that vertex v1 becomes the node with
highest load. This increase is because the number of tu-
ples that require a toll notification increases substantially
after 8000s. In the transformed STYX graph, which ran
on encrypted data streams, v5 and v1 come under high
load until 8000s, and after that v1 becomes the primary
bottleneck. This validates our hypothesis that primary
bottlenecks differ between graphs running on plaintext
vs encrypted streams.

Performance of STYX deployment profile. Now we
benchmark both the Storm topology graph and the trans-
formed STYX graph using LRB. For this, both graphs
are deployed in the best possible configuration so that the
maximum number of highways supported can be iden-
tified. Table 4 show the results. For plaintext streams
Storm supports 20 expressways, while using STYX with
encrypted streams we are able to support 15 express-
ways.We also plot the response times for all notification trig-
gering tuples, which is the time taken for the notification
to be issued from the time the tuple enters the system.
The response times for STYX are shown in Figure 11
and the response times for Storm are shown in Figure 10.
Response times while running STYX peak faster than
Storm, but for 15 expressways STYX is able to main-
tain the response time below the threshold allowed by
the benchmark.

Table 4: LRB comparison

System L Time (ms)1 Profile2

Storm 20 2694.44 5,4,1,3,2
STYX 15 2672.97 5,2,1,2,3,1,1

1Average response time.
2 Deployment profile for vertexes in order
v1,v2,v3,v4,v5 for Storm and v1,v2,v3,v4,v5,v6,v7 for
STYX

Effectiveness of analytical model. The effectiveness
of the model can be evaluated by looking at how well
the model converts the deployment profile for the plain-
text streams to the deployment profile for the encrypted
streams in STYX. Referring back to Figures 8 and 9,
these graphs can also be used as a baseline to under-
stand the model presented in Section 5.1. Vertexes with
higher utilization value should get more instances to ex-
ecute them. Table 5 shows the response time of STYX
deployment profile of the Storm graph and correspond-
ing STYX graph. As can be seen, the deployment profile
generated by STYX results in lowest response time. This
profile is also in accordance with Figure 9 which shows
vertex v1 and v4 should get the highest number of in-
stances.

Table 5: LRB deployment profile response time

STYX deployment profile Response time (ms)
5,2,1,2,3,1,11 2672.97
4,2,1,4,2,1,1 2714.3
5,4,1,3,2,1,1 2781.4

1 Deployment profile generated by STYX

Encryption overhead of IoT device We evaluate the
overhead of encryption in IoT devices. Raspberry Pi [8]
is a widely popular IoT device and has the capabilities
similar to devices found in highway cameras and vehicle
tracking and telemetry devices. We implemented three
different crypto system namely, AHE, MHE, and DET

10

Re-Keying
• Key change

– New York taxi route data (10G)
– Application finds the top 10 most frequent routes during the last 30 minutes

of taxi servicing
– Amazon EC2 (9 large nodes)

Outline

• Context

• Availability and integrity in big data analytics

• Privacy in big data analytics

• Conclusions and outlook

47

Conclusions and Outlook
• Cloud security is gigantic topic

• Big data security subset still huge

• Many building blocks, e.g., also functional encryption, oblivious RAM,
garbled circuits

• Much work left for described approaches, e.g.,

• BFT

• Peer-based trust management and attribution

• PHE

• Heuristics for re-encryption vs. client side completion

Conclusions and Outlook

• Much potential in hybrid techniques

• E.g. garbled circuits + PHE, HW extensions (Intel
SGX) + …?

• Also PL + SE + DS + Crypto + NW + OS + HW +
…

Conclusions and Outlook

• Much potential in hybrid techniques

• E.g. garbled circuits + PHE, HW extensions (Intel
SGX) + …?

• Also PL + SE + DS + Crypto + NW + OS + HW +
…

Open Ph.D.
position!

