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Secure Big Data”

Big data analytics is commonly performed in 3rd-
party cloud datacenters (DCs)

Geo-distribution exacerbates security issues
Multi-tenancy issue even in single cloud DCs

e Successful tampering with application X may
vield access to app Y
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Assurance

« Multi-faceted problem including
* Availability
* Integrity

» Code: mission-critical, e.g., government, business processes, CPS, disaster
response

« Data: similar
* Privacy
« Data: confidential, e.g., government, personal

« Code: competitive, e.g., algorithmic trading and business processes



Existing Work

« Communication-centric: focus on exchanged messages
e Firewalls, etc. - perimeter security
» Data-centric: mostly data at rest

» Access control/“differential privacy” (e.g., Airavat [Roy et al.;NSDI’10]),
encrypted storage (e.g., DepSky [Bessani et al.;Eurosys’11]), etc.

« Homomorphic encryption (e.g., [Gentry;STOC’09])

« Partial (e.g., CryptDB [Popa et al.;CACM’12], MrCrypt [Lesani et
al.;OOPSLA'13])

« Computation-centric: generating “correct” results

» Functional encryption, proof-based computation (e.g. Ginger [Setty et
al.;S&P’12])
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Problem Statement

 How to prevent an attacker from tampering with
computations?

» Cryptographic primitives such as zero-knowledge
proofs costly (e.g. Ginger [Setty et al.;S&P'12])
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Byzantine Fault Tolerance

e Protect “computation” with BFT [Lamport, Shostak,
Pease; TOPLAS’82] replication

* Processes (state machines) with benign and malicious
failures

« 3f+1 replicas for f failures in asynchronous distributed
systems

o Safety with 7 +1
e Liveness with 2f + 1 in synchronous system

e Comparison of outputs
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BFT — Hammer or Nail?

« Why BFT?
* Masks faulty components (availability, integrity)
 |dentifies faulty components (attribution, isolation)
 Solution higher up in protocol stack (interoperability, portability)

» Generic challenges of BFT

 Homogeneity: cloud providers have different OSs, OS versions/images,
ASLR standard

* Non-determinism: largely avoided by deterministic parallelization
* Agreement: only one “client”
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Specific Challenges

No monolithic server — each job runs on multiple
nodes

e Cf. Zyzzyva [Kotla et al.;SOSP’'07], Upright
[Clement et al.;SOSP’09]

Tasks may spawn multiple sub-tasks

Size of data too high for naive agreement
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ClusterBFT
|Stephen&Eugster;Middleware’13]

» Variable granularity replication

» Replication level configurable

» Trade overhead vs. guarantees

: L Untrusted
Streaming and lazy validation cluster
\ J
Y

* No need to wait for (2)f+1

« Compare in background, continue optimistically @
» Separation of duty with slim trust base W@

» Untrusted nodes compute

/

* Trusted nodes control
e Smart replica set overlapping

* Restore accuracy
16
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Architecture

Request Handler
Client

Client Handler

! 7 Graph Analysis Engine

IpEE i
Job Initiator &Verifier

I

I Execution Handler
Untrusted Execution Tracker
Storage cluster 5 ]

Resource Manager
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Components

e Request Handler
» Creates logical graph
* Automatically instruments and embeds validation
« Sets up inter and/or intra MR validation points
« Submits job to MR engine (modified Hadoop)
e Execution Handler
» Keeps track of execution progress
» Ensures cluster overlap

e Ensures task replicas do not overlap

19



lllustration

/ Group
For Each
Store
- /

Logical operation

MapReduce boundary
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Evaluation
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* 11 node cluster (10 data nodes + 1 name node / job tracker)
e Twitter dataset

e Pig script counting number of followers for each user
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Problem Statement

How to ensure that data does not leak in the face of
tampering?

* Intruders, internal threats
Holy grail — fully homomorphic encryption (FHE)
* Prohibitive costs in general case

* Fine-print in expressiveness

23
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Partially Homomorphic
Encryption (PHE)

* Some crypto systems can perform certain operations
‘under encryption”,e.qg.,

o Paillier [Paillier;EuroCrypt'99] » AHE: 3 @ s.t. D(E(x1)
® E(Xx2)) = X1 + Xo

 Unpadded RSA [Rivest et al.;CACM’78], ElGamal
[EIGamal; TolT’86]

> MHE: 3@ s.t. D(E(x1) ® E(x2) = x1 * xo

. DET (=), OPE (<), SRCH
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Privacy In Big Data Analytics

[Stephen et al.;HotCloud’14],[Stephen et al.;ASE'14]

* |ntuition
e Can use multiple cryptosystems side-by-side
* | everage parallelization (vs CryptDB [Popa et
al.;CACM’12], Monomi [Pu et al.;PVLDB’13],
Talos [Shatfagh et al.;SenSys’15])

e Client-side completion or re-encryption (vs
MrCrypt [Lesani et al.;OOPSLA13])



Crypsis Intuition

LOAD LOAD
EReRE, a:AHE) (b:MHE, c :MHE
\4
FILTER a > 5 bl = MULTIPLY b * c
(a:0PE) (b:MHE, c:MHE)
al = ADD a + 10 REENCRYPT STORE b1
(a:AHE) (bl :MHE » AHE)

d = ADD al + bl
(al:AHE, Dbl:AHE) AHE/OPE Encryption

MHE Encryption

STORE d .
Re-encryption
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Architecture Overview

Unencrypted Data > ErmscryPtion < Encrypted Data Encrypted
Database ervice Database
Pig Script Crypsis
Script Transformation UDFs
L 7

Transformed Unmodified Pig
Script Service

Coordinator

Trusted tier (Client) Untrusted tier (Server)

28



Script Transformation

» Generate data-flow graph (DFGQG)

* Nodes are relations (LOAD, FOREACH, ...)

* Edges are data-flow between operators
» Generate map of expression trees (MET)

« Contains all expressions

» Keys are used to assign expressions to DFG
» Generate set of annotated fields (SAF)

« One entry for each (relation, field') of script

Source
Script

Script analysis

MET J MAF J DAG J

Encryption
analysis

Operand Encryption ]

Output Encryption

Script
transformation

Input Data
Encryption Schema

Target
Script

|:| Program Transformation

D Data Artifacts

« (relation, field ), parent, available encryptions, required encryptions

—> QGenerates
<— Uses
--> Updates

» Get available encryptions from lineage of field, required encryptions using MET

29




Example Transformation

A = LOAD ‘inputl’ AS

(a0, al);
LOAD ‘input2’ AS (xO0);
= FILTER A BY a0 > 10;

H O QW

= FOREACH D GENERATE group AS
b0, SUM(C.a0) AS bl;

F = JOIN E BY b0, B BY x0;

STORE F INTO ‘out’;

= GROUP C BY al; [:::>

30
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F =

LOAD ‘enc_inputl’ AS
(a0_ope, a0 _ah, al det);
LOAD ‘enc_input2’ AS (x0_det);

= FILTER A BY a0 _ope > OPE(10);

GROUP C BY al det;

FOREACH D GENERATE group AS
b0, ENCSUM(C.a0 _ah) AS bl;

JOIN E BY b0, B BY x0 det;

STORE F INTO ‘out’;



Simple Re-Encryption

* Re-encryption required when

* Required encryption unavailable

* Incompatible operations, e.g., addition followed by multiplication
* Re-encryption conceptual

e Can continue on client side
« 17 PigMix |l benchmarks

« Only script 8 requires re-encyption (averaging)

o 1 script gets by with same attribute in several cryptosystems
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Evaluation (PigMix II)
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900 1" mpjg I
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PigMix Script

* 11 EC2 large instances (2 CPUs, 3.75BB RAM)

e 5(GB data

* Average of 3x overhead (FHE can lead to 1000...s)
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Crypsis Comparison

2000 FCrypsis ==Crypsis
1500 120 -
< 1250 o 100 7
D S
Z 1000 %‘ 80
(3
_E 750 U 60 ......
500 40 1
250 20 1
0 : 0 ; :
3 6 9 12 15 3 d 2 12 15
#Records (x 1,000,000) #Records (* 1,000,000)

e 3 EC2 medium instances

as fast as cryptdb when only on 1 node,
because CPU dominated

e ~3x faster for 15Mio records

e Similar overall cost
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Limitations

Drawback of PHE based solutions

* Multiple users must share same key

* Dealing with multiple domains adds complexity, e.qg., garbled circuits, re-encryption
Transparent solutions rarely yield optimal performance

* Encrypting everything is costly
Data specification

* Only owners of data can know which parts of their datasets can be shared, and to
what extent

Queries

e Can be expressed only if structure of data and accessibility constraints are known



PeEcCARY (Privacy-preserving Efficient Cloud-
based Computation applying Re-Encryption)

» Specification language

e Structure of data

Constraints on visibility of attributes

Relationships between attributes

Precise model of data types (e.g., 100 > value > 0)

E.g., data owners specify which (aggregation) operations are supported on which attributes

* Query language/compilation
» Allow access requirements to be derived
» Allow feasibility to be matched with specification

* Optimization, especially reduction of re-encryption



Secure Data Types (SDTs

Sensitivity levels
« HIGH, LOW, NONE
» Accounts for different security guarantees offered by crypto systems, avoids unnecessary overhead
Ranges and precision for data
» Positive/negative numbers
» Fixed ranges e.g. 0-100
» Decimal points for floats to preserve
Enumerations
» Fixed set of values, e.g. enum{EUROPE, ASIA, AMERICA, AFRICA}
Composite data types
» Values containing multiple parts, e.g. country code&local in phone #, year&month&day in date

composite[ (4:int[+])-(2:int[range(1-12)])]



SDT Example

DEFINE ILineitem AS {

orderkey: long[+],

linenumber: long[+, unique],

tax: double[2]<NONE>,

price: double[2]<HIGH>,

shipdate: composite[(4:int[+])-(2:int[range(1-12)]) -
(2:int[range(1-31)1)1,

shipinstruct: enum{IN PERSON, COLLECT COD, RETURN, NONE},

comment : chararray



Compilation Techniges

« Expression rewriting, e.g.,

e SUBSTRING (shipdate, 0, 4) == "1994’" ->
shipdate.year == 1994’
X, yv>=0; x +y>0->x>01] vy >0

((a * b) + ¢c) *d -> (a * b *d) + (c * d)
« Selective encryption, e.g.,
e NONE attributes

e (a+b) *c with non-sensitive ¢ -> Palillier secondary
homomorphic property



Compilation Techniques

* Subexpression elimination, e.g. (TPC-H Q01)

e price* (l-discount) VSprice* (1l-discount)* (l+tax)

SUM, AVG, COUNT vs SUM, COUNT; AVG = SUM/COUNT

 Efficient encryption, e.qg.,

Enum types with only DET and ORD -> (random) int values
OPE -> DET
unpadded RSA for AHE and ‘==

Boneh-Dan-Goh [Boneh et al.;TCC’05] for (multiple) AHE followed by (one)
MHE

Packing multiple values



Re-Encryption

e \Why throw in the towel when you can...

— ... complete computation on the client side?
Untrusted cloud

— ... re-encrypt on the client side? —
N A
Results | Local Query | Encrypted

Executor results Edrz?l;zt;d

. 7 N
e Or better yet generalize? Local|Query .

srrt e Query Peccary Remote query Serche

— Whenever hitting a PHE [imit ——— .. Seeoypeddn provider
o P (Apache Pig)

— Apply heuristic to choose 1. or 2. ry— RPN —

service Encrypted data g UDFs

e Plus
— Caching of DET values
— Speculative re-encryption for DET



Benefits

Caching and
speculative
encryption

Expression Selective Subexpr. Efficient
rewriting encryption elimination encryption

Secure data
types

Data range
and
precision

Enumerated
type

Composite
type




Performance

e TPC-H
— 10GB plaintext
— Amazon EC2 (10 xlarge nodes)
— Only system to execute Q1 and Q15 entirely in the cloud
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* Augmented to support (sub)string queries, floating points



Effectiveness

NORTHROP GRUMMAN

# of scripts

PigMix2 | TPC-H

Expression Rewriting
Selective Encryption
Efficient Encryption Strategy

Caching and Speculative Re-encryption -

Subexpression Elimination

1
14
20

PECCARY

# of queries with re-encryption
Total # of re-encryptions

7
2
Crypsis”
18
51

6
7

* Augmented to support (sub)string queries, floating points



Online Processing

e Same principles (transformation) can be applied online

* Implemented in Apache Storm (STYX — stream
processing with trustworthy cloud-based execution)

* Need to merge with corresponding optimizations

Trusted Tier
Encrypted data G

Stream processing applications

Untrusted cloud

dg

)

o ! D
Encrypted data

-

C) [oT encrypting hardware



LiInear Road Benchmark
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Re-Keying

« Key change
— New York taxi route data (10G)

— Application finds the top 10 most frequent routes during the last 30 minutes
of taxi servicing

— Amazon EC2 (9 large nodes)
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Conclusions and Outlook

« Cloud security is gigantic topic
» Big data security subset still huge

 Many building blocks, e.g., also functional encryption, oblivious RAM,
garbled circuits

 Much work left for described approaches, e.g.,
« BFT
» Peer-based trust management and attribution
« PHE

» Heuristics for re-encryption vs. client side completion



Conclusions and Outlook

 Much potential in hybrid techniques

 E.g. garbled circuits + PHE, HW extensions (Intel
SGX) + ...7

e Also PL + SE + DS + Crypto + NW + OS + HW +
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