
Exercise 7:
OSGi

Concepts and Technologies for Distributed Systems and Big Data Processing – SS 2016

Task 1 Implementing an OSGi service

Implement an OSGi service that computes the n-th Fibonacci number.

1. Create a service bundle which contains the service interface. The interface definition is given by the following:

public interface FibonacciService {
public int fib(int n);

}

The fibmethod computes the Fibonacci number for the given n. Both the service implementation and the bundles
using the service import this service bundle.

2. Create a service.host bundle which contains the implementation for the service. Thus, this bundle needs to im-
port the service bundle. The service is registered using BundleContext::registerService. When the service is
registered, other bundles can lookup and use the service.

3. Create a consumer bundle which makes use of the service. Thus, this bundle needs to import the service bundle.
However, note that this bundle does not need to import the service.host bundle, thus decoupling the service imple-
mentation from the consumer. As soon as the FibonacciService becomes available, the consumer should invoke
the service to compute the first ten Fibonacci numbers and print them to standard output. In order to get informed
when a service becomes available, a ServiceTracker can be used. Note that, besides the org.osgi.framework
dependency, you also need to specify the org.osgi.util.tracker dependency in the MANIFEST.MF file, to make
the ServiceTracker class available.

The Eclipse IDE has an embedded Equinox OSGi container which can be used to develop OSGi bundles. To create a new
bundle, open the New Project dialog via File→ New→ Project. In the dialog, choose Plug-in Project and click Next. In the
Plug-in Project dialog, enter the Project name and select OSGi framework: standard as Target Platform. You can leave the
default values on the next pages and click Finish at the end to generate the project.

When you have implemented all three bundles, you can right-click on the consumer bundle in the Eclipse Package Explorer
and select Run As→ OSGi Framework to load and start the bundles.

You can also export each bundle as JAR files using File → Export and select JAR file. Follow the steps of the JAR Export
dialog and make sure that you check Use existing manifest from workspace and select the correct MANIFEST.MF file. The
JAR files can then be loaded as bundle into other OSGi containers. For instance, you can download the Knopflerfish
OSGi container implementation from http://www.knopflerfish.org/. It comes with a graphical user interface to load,
unload, start and stop bundles.

1


