
Intro	to	distributed	systems

1

What	is	a	distributed	system?

A	distributed	system	consists	of	hardware	and	software	components	located	in	
a	network	of	computers	that	communicate	and	coordinate	their	actions	only	
by	passing	messages.	[Coulouris]	

A	distributed	system	is	a	collection	of	independent	computers	that	appears	to	
its	users	as	a	single	coherent	system.	[Tanenbaum &	van	Steen]

A	distributed	system	is	a	system	that	prevents	you	from	doing	any	work	when	a	
computer	you	have	never	heard	about,	fails.	[Lamport]	

• The	above	definitions	take	different	perspectives	
• Operational	perspective
• User	perspective
• DS	characteristics	perspective	

2

Examples	of	distributed	systems

• Intra-net,	inter-net,	WWW	
• DNS:	Hierarchical	distributed	database	
• Network	of	workstations	(NOW),	Cluster	Computers	
• Email	
• Electronic	banking	
• Airline	reservation	system	
• Peer-to-peer	networks	
• Sensor	networks	
• Mobile	and	Pervasive	Computing
• Cellular	phone	systems
• IP	Telephony
• Flight	management	system	in	an	aircraft
• Automotive	control	systems	(50+	embedded	processors	in	a	Mercedes	S-class)
• Distributed	file	systems	(NFS,	Samba)
• P2P	file	sharing
• Etc.,	etc.,	etc.	

3

The	Internet

4

Google

“Google	is	technologically	a	large	supercomputer.	It's	a	distributed	supercomputer	
among	many	data	centers	doing	all	sorts	of	interesting	things	over	fiber	optic	
network	that	eventually	are	services	available	to	end-users.”	Eric	Schmidt,	Google	
CEO	2007

“Google	runs	on	hundreds	of	thousands	of	servers—by	one	estimate,	in	excess	of	
450,000—racked	up	in	thousands	of	clusters	in	dozens	of	data	centers	around	the	
world.	It	has	data	centers	in	Dublin,	Ireland;	in	Virginia;	and	in	California,	where	it	
just	acquired	the	million-square-foot	headquarters	it	had	been	leasing.	It	recently	
opened	a	new	center	in	Atlanta,	and	is	currently	building	two	football-field-sized	
centers	in	The	Dalles,	Ore.”	2006

An	estimate	today	says	that	Google	runs	
more	than	2,000,000	server	in	36	data	centers	
around	the	globe

5

Google

"Our	view	is	it's	better	to	have	twice	as	much	hardware	that's	not	as	reliable	
than	half	as	much	that's	more	reliable.	You	have	to	provide	reliability	on	a	
software	level.	If	you're	running	10,000	machines,	something	is	going	to	die	
every	day.”	Jeff	Dean,	Google	fellow,	2008

“A	typical	search	will	require	actions	from	between	700	to	1,000	machines	
today.”	Maryssa	Mayer,	vice	president	of	Google’s	search	products	and	user	
experience,	2008

Google	processes	over	40,000	queries	every	second	on	average,	which	translates	to	
over	3.5	billion	searches	per	day	(internetlivestats)

“Our	current	generation	— Jupiter	fabrics	— can	deliver	more	than	1	
Petabit/sec	of	total	bisection	bandwidth.	To	put	this	in	perspective,	such	
capacity	would	be	enough	for	100,000	servers	to	exchange	information	at	
10Gb/s	each,	enough	to	read	the	entire	scanned	contents	of	the	Library	of	
Congress	in	less	than	1/10th	of	a	second.”	Amin	Vahdat,	Google	Fellow,	2015

6

Google	data	centers

E.g.,	Dallas	site:	
Three	68,000	square	foot	
data	center	buildings

7
https://www.google.com/about/datacenters/

Distributed	systems	vs	centralized	systems

• Concurrency
• In	centralized	systems,	concurrency	is	a	design	choice.
• In	distributed	systems,	computers	run	concurrently.

• Independent	and	partial	failures
• Centralized	systems	usually	fail	completely.
• Distributed	systems	usually	fail	partially,	often	because	of	communication.	When	a	
component	fails,	the	others	are	still	running.	Detecting	failures	may	be	hard.	Recovery	is	also	
hard	because	the	state	of	an	application	is	distributed.

• Absence	of	global	clock	
• In	centralized	systems,	the	physical	clock	of	the	computer	
can	be	used	for	synchronization.

• In	distributed	systems	clocks	may	not	be	in	sync
• Example:	Bank	account,	starting	balance	=	$100

• Client	at	bank	machine	A	makes	a	deposit	of	$100
• Client	at	bank	machine	B	makes	a	withdrawal	of	$150
• Which	event	happened	first?	
• Should	the	bank	charge	the	overdraft	fee?	

8

The	eight	fallacies	of	distributed	systems

”Essentially	everyone,	when	they	first	build	a	distributed	application	
makes	the	following	eight	simplifying	assumptions.	All	false	in	the	long	
run	(Peter	Deutsch)”

1. The	network	is	reliable.
2. The	network	is	secure.
3. The	network	is	homogeneous.	
4. The	topology	does	not	change.
5. Latency	is	zero.
6. Bandwidth	is	infinite.
7. Transport	cost	is	zero.
8. There	is	one	administrator.	 These	assumptions	ultimately	prove	false,	

resulting	either	in	the	failure	of	the	system,	a	
substantial	reduction	in	system	scope,	or	in	large,	
unplanned	expenses	required	to	redesign	the	
system	to	meet	its	original	goals

Building	distributed
systems	is	hard!

9

Why	Distributed	Systems

• Functional	distribution	
• Computers	have	different	functional	capabilities	(e.g.,	File	server,	printer)	yet	
may	need	to	share	resources	

• Client	/	server
• Data	gathering	/	data	processing	

• Incremental	growth
• Easier	to	evolve	the	system
• Modular	expandability	

• Inherent	distribution	in	application	domain	
• Banks,	reservation	services,	distributed	games,	mobile	apps
• physically	or	across	administrative	domains
• cash	register	and	inventory	systems	for	supermarket	chains
• computer	supported	collaborative	work	

10

Why	Distributed	Systems

• Economics	
• collections	of	microprocessors	offer	a	better	price/	performance	ratio	than	large	
mainframes.

• Low	price/performance	ratio:	cost	effective	way	to	increase	computing	power.

• Better	performance
• Load	balancing
• Replication	of	processing	power	
• A	distributed	system	may	have	more	total	computing	power	than	a	mainframe.		Ex.	10,000	
CPU	chips,	each	running	at	50	MIPS.	Not	possible	to	build	500,000	MIPS	single	processor	
since	it	would	require	0.002	nsec instruction	cycle.	Enhanced	performance	through	load	
distributing.

• Increased	Reliability
• Exploit	independent	failures	property
• If	one	machine	crashes,	the	system	as	a	whole	can	still	survive.

• Another	driving	force:	the	existence	of	large	number	of	personal	computers,	the	
need	for	people	to	collaborate	and	share	information.

11

Goals	and	challenges	of	distributed	systems

• Transparency
• How	to	achieve	the	single-system	image

• Performance
• The	system	provides	high	(computing,	storage,	..)	performance

• Scalability
• The	ability	to	serve	more	users,	provide	acceptable	
response	times	with	increased	amount	of	data	

• Openness	
• An	open	distributed	system	can	be	extended	and	improved		incrementally	
• Requires	publication	of	component	interfaces	and	standards	protocols	for	accessing	
interfaces	

• Reliability	/	fault	tolerance	
• Maintain	availability	even	when	individual	components	fail

• Heterogeneity	
• Network,	hardware,	operating	system,	programming	languages,	different	developers

• Security
• Confidentiality,	integrity	and	availability

12

Transparency
• How	to	achieve	the	single-system	image,	i.e.,	how	to	make	a	

collection	of	computers	appear	as	a	single	computer.

• Hiding	the	distribution	at	two	levels:	
• Hide	the	distribution	from	users	
• At	a	lower	level,	make	the	system	look	transparent	to	programs.	

->	Require	uniform	interfaces	such	as	access	to	files,	communication.

• Different	forms	of	transparency	in	a	DS	(ISO,	1995).	
• Trade-off	between	transparency	and	

performance	of	a	system	

13

Transparency	in	distributed	systems

Access transparency: enables local and remote resources to be accessed using
identical operations.

• Dropbox
• SQL queries

Location	transparency:	enables	resources	to	be	accessed	without	knowledge	
of	their	physical	or	network	location	(for	example,	which	building	or	IP	
address).	

• Users	cannot	tell	where	hardware	and	software	resources	such	as	CPUs,	printers,	
files,	data	bases	are	located.

• Navigation	in	the	web
• Tables	in	distributed	database

Migration	Transparency:	resources	must	be	free	to	move	from	one	location	to	
another	without	their	names	changed.
E.g.,	/usr/lee,	/central/usr/lee

14

Transparency	in	distributed	systems

Concurrency	transparency:	enables	several	processes	to	operate	
concurrently	using	shared	resources	without	interference.

• The	users	are	not	aware	of	the	existence	of	other	users.		
• Need	to	allow	multiple	users	to	concurrently	access	the	same	resource.	Lock	
and	unlock	for	mutual	exclusion.

• Distributed	file	system,	distributed	database

Parallelism	Transparency:		Automatic	use	of	parallelism	without	having	
to	program	explicitly.		The	holy	grail	for	distributed	and	parallel	system	
designers.

15

Transparency	in	distributed	systems

Replication	transparency:	enables	multiple	instances	of	resources	to	
be	used	to	increase	reliability	and	performance	without	knowledge	of	
the	replicas	by	users	or	application	programmers.

• OS	can	make	additional	copies	of	files	and	resources	without	users	noticing.

Failure	transparency:	enables	the	concealment	of	faults,	allowing	
users	and	application	programs	to	complete	their	tasks	despite	the	
failure	of	hardware	or	software	components.

• DBMS,	Big	Data	processing	systems

16

Transparency	in	distributed	systems

Mobility	transparency:	allows	the	movement	of	resources	and	clients	
within	a	system	without	affecting	the	operation	of	users	or	programs.

• Roaming,	moving	between	two	access	points.

Performance	transparency:	allows	the	system	to	be	reconfigured	to	
improve	performance	as	loads	vary.
Scaling	transparency:	allows	the	system	and	applications	to	expand	in	
scale	without	change	to	the	system	structure	or	the	application	
algorithms.

17

Transparency	in	distributed	systems

In	certain	cases	transparency	is	impracticable	or	not	convenient

• Some	things	cannot	be	made	transparent
• Timezones
• Communication	delays

• Hiding	too	much	may	have	a	negative	performance	impact
• Accessing	multiple	times	a	remote	object	without	knowing

• Sometimes	transparency	is	just	undesirable
• Users	do	not	always	want	complete	transparency:	
a	fancy	printer	1000	miles	away

18

Reliability

• Hardware,	software	and	network	fail
• DS	must	maintain	availability	even	in	cases	where	hardware/software/network	
have	low	reliability	

• Failures	in	distributed	systems	are	partial	
• Makes	error	handling	particularly	difficult	

• Detection of	failures	– may	be	impossible
• In	some	cases	it	is	easy,	e.g.,	checksum	in	communication
• Has	a	component	crashed?	Or	is	it	just	slow?	
• Is	the	network	down?	Or	is	it	just	slow?	
• If	it’s	slow	– how	long	should	we	wait?

• Many	techniques	for	handling failures	
• Masking	failures	(retransmission	in	protocols)
• Tolerating	failures,	degrading	the	offered	service	(as	in	web-browsers)
• Recovery	from	failures	(periodically	save	state	of	a	component,	roll	back	partially	completed	
task)

• Redundancy	(replicate	servers	in	failure-independent	ways,	duplicate	network	routes)	

19

Reliability

•Distributed	system	should	be	more	reliable	than	single	system.		
• Example:	

• Single	machine:	0.95	probability	of	being	up.		
• System	with	3	machines	(all	machines	need	to	break):	
1	- 0.05**3	probability	of	being	up.

Availability:	fraction	of	time	the	system	is	usable.		
• Redundancy	improves	it
• Recovery	between	failures

• Need	to	maintain	consistency
• Need	to	mask	failures	

20

Performance

•Without	gain	on	this,	why	bother	with	distributed	systems.	
• Performance	loss	due	to	communication	delays:

– fine-grain	parallelism:	high	degree	of	interaction
– coarse-grain	parallelism

•Performance	loss	due	to	making	the	system	fault	tolerant.

21

Scalability

• System	remains	effective	as	it	grows?	
• As	you	add	more	components:

• More	synchronization
• More	communication	–>	the	system	runs	slowly.

• A	system	is	scalable	if	it	remains	effective	when	there	is	a	significant	
increase	in	the	amount	of	resources	(data)	and	number	of	users	

• Internet:	number	of	users	and	services	has	grown	enormously	

• Scalability	denotes	the	ability	of	a	system	to	handle	an	increasing	
future	load	

22

Scalability

• Requirements	of	scalability	often	leads	to	a	distributed	system	
architecture	(several	computers)	

• Systems	grow	with	time	or	become	obsolete.	
• Techniques	that	require	resources	linearly	in	terms	of	the	size	of	
the	system	are	not	scalable.			

• E.g.,	broadcast	based	query	won't	work	for	large	distributed	systems.

• Examples	of	bottlenecks:	Everyone	is	waiting	for	a	single	shared	resource
• Centralized	services:	a	single	mail	server
• Centralized	data:	a	single	URL	address	book
• Centralized	algorithms:	routing	based	on	complete	information

23

Scaling	techniques

Distribution
• Splitting	a	resource	(such	as	data)	into	smaller	parts,	
and	spreading	the	parts	across	the	system	(cf DNS)	

24

Scaling	techniques:	DNS

Recursive	mode	
also	possible.	
What	is	the	issue?

Initially,	all	host-addess mappings	were	in	a	file	hosts.txt (in	/etc/hosts)	
• Changes	were	submitted	to	SRI	(Stanford	Research	Institute)	by	email	
• New	versions	of	hosts.txt ftp’d	periodically	from	SRI	
• An	administrator	could	pick	names	at	their	discretion	
• Any	name	is	allowed:	eugenesdesktopatrice (flat	namespace)	

As	the	internet	grew	this	system	broke:	
• SRI	couldn’t	handled	the	load	
• Hard	to	enforce	name	uniqueness
• Many	hosts:	inaccurate	hosts.txt

Domain	Name	System	(DNS)	
was	born	in	‘83	

25

Scaling	techniques

• Replication
• Replicate	resources	(services,	data)	across	the	system,	
can	access	them	in	multiple	places	

• Caching	to	avoid	recomputation
• Increased	availability	reduces	the	probability	that	a	bigger	system	breaks

• Hiding	communication	latencies	
• Avoid	waiting	for	responses	to	
remote	service	requests	

• Use	asynchronous	communication

26

Scaling	techniques

• Reducing	amount	of	remote	requests
• (a)	the	server	checks	the	forms	as	they	are	being	filled	(b)	a	client	does.	

27

Openness

• Can	the	systems	be	extended	and	reimplemented in	various	ways?

• To	be	achieved
• Publish	all	key	aspects	of	the	system

• Protocols
• Interfaces	to	services

• Adopting	standards	as	much	as	possible
• Take	design	decisions	that	favor	interoperability	and	portabiliy

Example:	The	Internet.	RFCs	and	an	open	standardization	body	(IETF)

28

Heterogeneity

• Hardware	and	software	(e.g.,	operating	systems,	processors)
• How	can	an	Intel/Windows	system	understand	messages	sent	by	an	Macintosh	OS	
X	system?	

• Different	performance.	E.g.	mobile	devices	have	low	computing	power	

• Different	network	infrastructures	(Ethernet,	802.11	– wireless)
• Programming	languages

• How	can	a	Java	program	and	a	C	program	communicate?	

29

Security

• Security	for	the	information	resources	made	available	and	
maintained	in	the	distributed	system	has	three	components

• Confidentiality:	Protection	against	disclosure	to	unauthorized	individuals
• Integrity:	Protection	against	alteration	or	corruption
• Availability:	Protection	against	interference	with	the	means	to	access	the	
resource	(e.g.,	DOS	attack)

• Encryption	is	a	powerful	mechanism	
but	several	issues	are	still	open

• DOS	attacks
• Mobile	code	
• …

Example:
DNS	Spoofing

30

(More)	Basic	concepts

31

Parallel	vs.	distributed	computing

32

Middleware

• Middleware	provides	horizontal
services	to	help	building	
distributed	applications

• It	masks	platforms	differences

• Example:	message	oriented	middleware
• Store	(buffer),	route,	or	transform	
messages	converting	them	from	
senders	to	receivers

33

Intranet:	A	portion	of	the	Internet

intranet

ISP

desktop computer:

backbone

satellite link

server:

☎

network link:

☎

☎

☎

34

Intranet

A	portion	of	the	Internet	that	
• is	separately	administered	
• usually	proprietary	
• provides	internal	and	
external	services	

• can	be	configured	to	
enforce	local	security	policies	

• may	use	a	firewall	to	prevent	
unauthorized	messages	leaving	or	entering	

• may	be	connected	to	the	internet	via	a	router	

Services:	
• File,	print	services,	backup,	program-sharing,	user-,	system-
administration,	internet	access	

the rest of

email server

Web server

Desktop
computers

Fil e server

router/firewall

print and other servers

other servers

print

Local area
network

email server

the Internet

35

Throughput	/	Latency	

• Latency	– “wire	delay”
• Time	to	send	and	recv one	byte	of	data	
• Depends	on	“distance”	

• Throughput	
• Bytes	per	second
• Depends	on	the	size	of	the	vehicle

• Latency	is	often	the	bottleneck
• Improves	slower	than	bandwidth	
• Speed	of	light
• Routes	in	the	middle	(traffic	stops)
• Request-respond	cycle	often	dominates	the	application

36

Performance	scales

Register 1

L2 10

Memory 200

LAN 100,000

Disk 2,000,000

WAN 20,000,000
37

Exercise

38

Exercise

Reading
• There’s	Just	No	Getting	around	It:	You’re	Building	a	Distributed	
System	[Mark	Cavage]

• Answer	questions	in	the	exercise	sheet	available	on	the	website
• Open	questions	for	discussion

39

Questions?

40

