Introduction to Map Reduce



Map Reduce: Motivation

“We realized that most of our computations involved applying a map
operation to each logical record in our input in order to compute a set
of intermediate key/value pairs, and then applying a reduce operation
to all the values that shared the same key in order to combine the
derived data appropriately.”

“The issues of how to parallelize the computation, distribute the data,
and handle failures conspire to obscure the original simple
computation with large amounts of complex code to deal with these

issues.”

Dean, Ghemawat. MapReduce: simplified data processing on large
clusters. CACM. ACM 51, 1 January 2008



Problem Scope

Need to scale to 100s or 1000s of computers, each with several
processor cores

How large is the amount of work?
* Web-Scale data on the order of 100s of GBs to TBs or PBs
* It is likely that the input data set will not fit on a single computer’s hard drive

* Hence, a distributed file system (e.g., Google File System- GFS) is typically
required



Problem Scope

* Scalability to large data volumes:
* Scan 1000 TB on 1 node @ 100 MB/s = 24 days
e Scan on 1000-node cluster = 35 minutes

e Required functions
* Automatic parallelization & distribution
* Fault-tolerance
 Status and monitoring tools

* A clean abstraction for programmers

* Functional programming meets
distributed computing

* A batch data processing system




Commodity Clusters

* Need to efficiently process large volumes of data by connecting many
commodity computers together to work in parallel

* A theoretical 1000-CPU machine would cost a very large amount of
money, far more than 1000 single-CPU or 250 quad-core machines



Mapreduce & Hadoop - History

* 2003: Google publishes about its cluster architecture & distributed file
system (GFS)

* 2004: Google publishes about its MapReduce model used on top of GFS

* Both GFS and MapReduce are written in C++ and are closed-source, with Python
and Java APIs available to Google programmers only

* 2006: Apache & Yahoo! -> Hadoop & HDFS

* open-source, Java implementations of Google MapReduce and GFS with a diverse
set of APl available to the public

* Evolved from Apache Lucene/Nutch open-source web search engine

* 2008: Hadoop becomes an independent Apache project
* Yahoo! Uses Hadoop in production

* Today: Hadoop is used as a general-purpose storage and analysis platform
for big data
e Other Hadoop distributions from several vendors including EMC, IBM, Microsoft,
Oracle, Cloudera, etc.
* Many users (http://wiki.apache.org/hadoop/PoweredBy)
* Research and development actively continues...



Google Cluster Architecture: Key ldeas

* Single-thread performance doesn’t matter
* For large problems, total throughput/$ is more important than peak

o Stuff breaks

* If you have 1server, it may stay up three years (1,000days).
* If you have 10,000 servers, expect to lose 10 per day.

e “Ultra-reliable” hardware doesn’t really help

» At large scales, the most reliable hardware still fails, albeit less often

» Software still needs to be fault-tolerant
* Commodity machines without fancy hardware give better performance/$

* Have a reliable computing infrastructure from clusters of unreliable
commodity PCs.

* Replicate services across many machines to increase request
throughput and availability.

* Favor price/performance over peak performance.



What Makes MapReduce Unique?

* Its simplified programming model which allows the user to quickly write
and test distributed systems

e |ts efficient and automatic distribution of data and workload across
machines

* Its flat scalability curve. Specifically, after a Mapreduce program is
written and functioning on 10 nodes, very little-if any- work is required
for making that same program run on 1000 nodes.

* MapReduce ties smaller and more reasonably priced machines together
into a single cost-effective commodity cluster



lsolated Tasks

MapReduce divides the workload into multiple independent tasks and
schedules them across cluster nodes

A work performed by each task is done in isolation from one another

The amount of communication which can be performed by tasks is
mainly limited for scalability reasons

The communication overhead required to keep the data on the nodes
synchronized at all times would prevent the model from performing
reliably and efficiently at large scale



MapReduce in a Nutshell

* Given:
* avery large dataset

* a well-defined computation task to be performed on elements of this dataset
(preferably, in a parallel fashion on a large cluster)

* Map Reduce framework:
 Just express what you want to compute (map() & reduce()).

* Don’t worry about parallelization, fault tolerance, data distribution, load
balancing (MapReduce takes care of these).

* What changes from one application to another is the actual computation; the
programming structure stays similar.

* In simple terms
* Read lots of data.
* Map: extract something that you care about from each record.
 Shuffle and sort.
* Reduce: aggregate, summarize, filter, or transform.
* Write the results.

* One can use as many Maps and Reduces as needed to model a given
problem.



: Note: There is no precise 1-1
I correspondence. Please take

I h- .
Lthis just as an analogy. _ __ |

Functional programming
“foundations”

* map::(a—=>b)—>[a]=>[b]
* Example: Double all numbers in a list.

I T T T T 1T
* >map ((*) 2) [1, 2, 3] EEEEREERER

>[2, 4, 6]

* map in MapReduce €< map in FP . . . .. .
| | | R |

* In a purely functional setting, an element of a list being computed by
map cannot see the effects of the computations on other elements.

* If the order of application of a function f to elements in a list is
commutative, then we can reorder or parallelize execution.
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: Note: There is no precise 1-1 :
I correspondence. Please take |
|

I h- .
Lthis just as an analogy. _ __ |

Functional programming
“foundations”

* Move over the list, apply f to each element and an accumulator. f
returns the next accumulator value, which is combined with the next
element.

 reduce in MapReduce <> fold in FP
e foldl::(b>a—>b)>b->[a]>b

e Example: Sum of all numbers in a list.
« >foldl (+) 0 [1, 2, 3] foldl (+) 0 [1, 2, 3]
> 6 returned

I

accumulators
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MapReduce Basic Programming Model

* Transform a set of input key-value pairs to a set of output values:
e Map: (k1, v1) = list(k2, v2)

* MapReduce library groups all
intermediate pairs with same key together.

* Reduce: (k2, list(v2)) = list(v2)

How MapReduce Works?

-0 00—l
H-0&/ l\
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Word Count

map(kl, v1) - list(k2, v2)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

Emitintermediate(w, “1”);

“document1”, “to be or not to be”

i‘to", “1 »
nbe“, u1 ”
uoravy 5:1 "

reduce(k2, list(v2)) - list(v2)

reduce(String key, Iterator values):

// key: a word

// values: a list of counts
int result = 0;

for each v in values:
result += Parselnt(v);

Emit(AsString(result));

key = “be” key = “not” key = “or" key = “to”

values = “1”, “1" values = “1” values = “1”

l l l l

“2" “1" “1” 2"

values = “1", “1”



Parallel processing model

Input key*value Input key*value
pairs pairs
Y Y
map map
Data store 1 Data store n
(kéy 1, (key 2, (Key 3, (kéy 1, (key 2, (Key 3,
values...) values...) values...) values...) values...) values...)

N |

. == Barrier ==  Aggregates intermediate values by output key |

| == - s s .
key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
) 4 Y Y
reduce reduce reduce
final key 1 final key 2 final key 3

values values values
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Execution overview | Read as part of this lecture! |
| Jeffrey Dean and Sanjay I
| Ghemawat. 2008. MapReduce: |
l
I
l

| simplified data processing on

Master — Workers | large clusters. Commun. ACM
Master coordinates

Local Write / remote reads

(2j'a§sign ;

.-map
' reduce

split 0
< output
file O
it (4) local write
<
split 2 3) read
split 3 output
file 1
split 4
= e
Input Map Intermediate files Reduce Output

files phase (on local disks) phase files .



MapReduce Scheduling

* One master, many workers
* Input data split into M map tasks (typically 64 MB (~ chunk size in GFS))
* Reduce phase partitioned into R reduce tasks (hash(k) mod R)
* Tasks are assigned to workers dynamically

* Master assigns each map task to a free worker
» Considers locality of data to worker when assigning a task
» Worker reads task input (often from local disk)
» Worker produces R local files containing intermediate k/v pairs

* Master assigns each reduce task to a free worker

* Worker reads intermediate k/v pairs from map workers
* Worker sorts & applies user’s reduce operation to produce the output



Data Distribution

* In a MapReduce cluster, data is distributed to all the nodes of the
cluster as it is being loaded in

* An underlying distributed file systems (e.g., GFS) splits large data files
into chunks which are managed by different nodes in the cluster

Input data: A large file

Node 1 Node 2 Node 3

Chunk of input data Chunk of input data Chunk of input data

* Even though the file chunks are distributed across several machines,
they form a single namespace



Partitions

* In MapReduce, intermediate output values are not usually reduced together
e All values with the same key are presented to a single Reducer together

* More specifically, a different subset of intermediate key space is assigned to
each Reducer

* These subsets are known as partitions

Different colors represent

differentkeys (potentialy) [l [l Hl I HE B N B
from different Mappers | ' B = . '
Partitions are the input to Reducers - - .



Word count again

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 — = Bear, 2
Deer,1 ———w» Bear, 1
Deer Bear River —— | Bear, 1

River, 1
/ Car, 1
Car,1 —w» Car,3 | — = Bear, 2

Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——m CarCarRiver —wm{ Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2

Deer,1 ———m Deer,2 ———

Deer, 1
Deer, 1
Deer CarBear —— = Car, 1
Bear, 1 River, 1 —— = River, 2

River, 1
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Choosing M and R

* M = number of map tasks, R = number of reduce tasks

e Larger M, R: creates smaller tasks, enabling easier load balancing and
faster recovery (many small tasks from failed machine)

e Limitation: O(M+R) scheduling decisions and O(M*R) in-memory
state at master
* Very small tasks not worth the startup cost

 Recommendation:
* Choose M so that split size is approximately 64 MB

* Choose R a small multiple of the number of workers; alternatively choose R a
little smaller than #workers to finish reduce phase in one “wave”



MapReduce Fault Tolerance

* On worker failure:
* Master detects failure via periodic heartbeats.

* Both completed and in-progress map tasks on that worker should be re-
executed (= output stored on local disk).

* Only in-progress reduce tasks on that worker should be re- executed (-
output stored in global file system).

 All reduce workers will be notified about any map re-executions.

* On master failure:
* State is check-pointed to GFS: new master recovers & continues.

* Robustness:
* Example: Lost 1600 of 1800 machines once, but finished fine.



MapReduce Data Locality

* Goal: To conserve network bandwidth.

* In GFS, data files are divided into 64MB blocks and 3 copies of each
are stored on different machines.

* Master program schedules map() tasks based on the location of these

replicas:
* Put map() tasks physically on the same machine as one of the input replicas
(or, at least on the same rack / network switch).
* This way, thousands of machines can read input at local disk speed.
Otherwise, rack switches would limit read rate.



Stragglers & Backup Tasks

* Problem: “Stragglers” (i.e., slow workers) significantly lengthen the
completion time.

* Solution: Close to completion, spawn backup copies of the remaining
in-progress tasks.
* Whichever one finishes first, “wins”.

* Additional cost: a few percent more resource usage.
* Example: A sort program without backup = 44% longer.



Other Practical Extensions

» User-specified combiner functions for partial combination within a
map task can save network bandwidth (~ mini-reduce)
* Example: WordCount

» User-specified partitioning functions for mapping intermediate key
values to reduce workers (by default: hash(key) mod R)
* Example: hash(Hostname(urlkey)) mod R

* Ordering guarantees: Processing intermediate k/v pairs in increasing
order
* Example: reduce of WordCount outputs ordered results.

e Custom input and output format handlers
* Single-machine execution option for testing & debugging



Basic MapReduce Program Design

 Tasks that can be performed independently on a data object, large
number of them: Map

 Tasks that require combining of multiple data objects: Reduce

* Sometimes it is easier to start program design with Map, sometimes
with Reduce

* Select keys and values such that the right objects end up together in
the same Reduce invocation

* Might have to partition a complex task into multiple MapReduce sub-
tasks



MapReduce vs.

Traditional RDBMS

MapReduce Traditional RDBMS
Data size Petabytes Gigabytes
Access Batch Interactive and batch
Updates erte once, read many Rgad and write many
times times
Structure Dynamic schema Static schema
Integrity Low High (normalized data)
Scaling Linear Non-linear (general

sQL)
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More Hadoop details



Hadoop

* Since its debut on the computing stage, MapReduce has
frequently been associated with Hadoop

* Hadoop is an open source implementation of MapReduce and is
currently enjoying wide popularity

* Hadoop presents MapReduce as an analytics engine and under
the hood uses a distributed storage layer referred to as Hadoop
Distributed File System (HDFS)

* HDFS mimics Google File System (GFS)



Hadoop MapReduce: A Closer Look

Node 1

Files loaded from local HDFS store

i

RecordReaders
Input (K, V) pairs
Map Map \YETe)

Intermediate (K, V) pairs

Partitioner

Reduce

Final (K, V) pairs

Writeback to local CupLerEt

HDFS store

]

Node 2

Shuffling
Process

><

Intermediate
(K,V) pairs
exchanged by
all nodes

Files loaded from local HDFS store

RecordReaders

Input (K, V) pairs

Intermediate (K, V) pairs

Partitioner

Reduce

Final (K, V) pairs

OutputFormat

Writeback to local
HDFS store




Input Files

* Input files are where the data for a MapReduce task is initially stored
* The input files typically reside in a distributed file system (e.g. HDFS)

* The format of input files is arbitrary
* Line-based log files
* Binary files
*  Multi-line input records
* Or something else entirely




InputFormat

* How the input files are split up and read is defined by the InputFormat
* InputFormat is a class that does the following:

 Selects the files that should be used for input

* Defines the InputSplits that break a file

* Provides a factory for RecordReader objects that
read the file

Files loaded from local HDFS store




InputFormat Types

Several InputFormats are provided with Hadoop:

InputFormat

TextInputFormat

Description

Default format;
reads lines of text
files

Key Value
The byte The line contents
offset of the

line

KeyValuelnputFormat

Parses lines into
(K, V) pairs

Everythingup  The remainder of
to the first tab the line
character

SequenceFilelnputFormat

A Hadoop-specific
high-performance
binary format

user-defined user-defined




Input Splits

* An input split describes a unit of work that comprises a single map task in a
MapReduce program

* By default, the InputFormat breaks a file up into 64MB splits

« By dividing the file into splits, we allow Files loaded from local HDFS store

several map tasks to operate on a single
file in parallel ii

e If the file is very large, this can improve
performance significantly through parallelism

* Each map task corresponds to a single input split



RecordReader

* The input split defines a slice of work but does not describe how
to access it

* The RecordReader class actually loads data from its source and
converts it into (K, V) pairs suitable for reading by Mappers

Files loaded from local HDFS store

* The RecordReader is invoked repeatedly
on the input until the entire split is consumed i

e Each invocation of the RecordReader leads

VR
to another call of the map function defined ﬂ ﬂ ﬂ

by the programmer




Mapper and Reducer

* The Mapper performs the user-defined work
of the first phase of the MapReduce program

Files loaded from local HDFS store

* A new instance of Mapper is created
for each split

* The Reducer performs the user-defined work
of the second phase of the MapReduce program

* A new instance of Reducer is created for each partition

* For each key in the partition assigned to a Reducer, the
Reducer is called once




Partitioner

* Each mapper may emit (K, V) pairs
to any partition

Files loaded from local HDFS store

* Therefore, the map nodes must all agree on
where to send different pieces of
intermediate data

* The partitioner class determines which
partition a given (K,V) pair will go to

* The default partitioner computes a hash value for a
given key and assigns it to a partition based on
this result

Partitioner




Sort

Files loaded from local HDFS store

* Each Reducer is responsible for reducing
the values associated with (several)
intermediate keys

* The set of intermediate keys on a single
node is automatically sorted by
MapReduce before they are presented
to the Reducer

Partitioner




OutputFormat

Files loaded from local HDFS store

* The OutputFormat class defines the
way (K,V) pairs produced by Reducers
are written to output files

* The instances of OutputFormat provided by
Hadoop write to files on the local disk or in HDFS

* Several OutputFormats are provided by Hadoop:

TextOutputFormat Default; writes lines in "key \t
value" format

SequenceFileOutputFormat Writes binary files suitable for
reading into subsequent
MapReduce jobs

NullOutputFormat Generates no output files




Questions?



Exercise



Exercise

* Read the original Map Reduce paper
* Answer some questions

* Implement “friends count”

* Fill “word length” (why fill, anyway?)

* Code available as a Maven or
Eclipse project: Just run locally

Understand and run “inverted indexes”

ece [5] Java EE - had jjaval tedindex.java - Eclipse - /Usersfguido/Desktop/CTBD/lecture2/wp
= P s (v B BA O GBS QIR G DO
B |79 JavaEE
[ ProjectExp 32 = B  [J] WordCount.java %ih Mapper.class 1] FriendCount.jav [4] Invertedindex.j 52 = S 0= m =0
=SR-3 - |21 private Text file = new Text(); =HLA I
¥ 5> hadoop [CTBD master 22 -
'=?s:’dm“‘”;‘““ 23 @0verride # detudstg
4 de.tud.st _ 5 ;
,ﬂﬁ;.;;nwia\ 224 protected void map(LongWritable key, Text value, 'G)‘":wmﬂ‘me
i : : - : :
v [} vertsdindex 25 FileSplit fileSplit = (FileSplit)context.get ve J”‘:;‘:_’
> G invertedinde 25 String fileName = fileSplit.getPath().getNam a file: T
> O varistultplis | file.set(fileName); ~mapiL
» L’) Relational Join.j - ¥ @ % InvertedR
¥ [} Relationaldoin2 |~ 28 e
¥ [fj WordCountjavi 79 StringTokenizer tokenizer = new StringTokeni - roduct
:E‘«::“V;“”“Lf’“”' 30 while (tokenizer.hasMoreTokens()) { & ° main(strii
i Maven Dependencies .
v By > input 31 word.set(tokenizer.nextToken());
b Cy friendeount 32 context.write(word, file);
¥y matrixmultiplicatic 33 3}
P (3 relationaljoin
by wordeount 34 1
¥ (= output Markers [T] Properties Servers {3 Data Source Explore Snippets B Censele 53 =0
E R% BEREE -0
. s,:cuari-r-ooooo <terminateds [Library/Java/JavavirtualMachines/jak1.8.0_77.jdk/Contents/Home/binfjava (Apr 17, 2016, 5:44:22 PM)
& = = = g

Writable Smart Insert 24:13
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MapReduce Use Case: Word Length

Abridged Declaration of Independence

Declaration Representatives..-- -,.- Blg - YE”OW - 10+ |etterS
Medium = Red =5..9 letters

subordination Il : | i
\ . #“*"“ﬂm Small = Blue = 2..4 letters

change ) .
R o e || N g 1INy = Pink =1 letter
|
Wles
1 ] e & Big 37
L - Medium 148
A 1] Small 200
B unremitting Tiny 9

| . contradict
| B8 establishment
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MapReduce Use Case: Word Length

Split the document into
chunks and process
each chunk

on a different computer

Abridged Declaration of Independence

A Declaration By the Representatives of the United States of America, in General
Congress Assembled.

When in the course of human events it becomes necessary for a people to advance from
that subordination in which they have hitherto remained, and to assume among powers of
the earth the equal and independent station to which the laws of nature and of nature's
god entitle them, a decent respect to the opinions of mankind requires that they should
declare the causes which impel them to the change.

We hold these truths to be self-evident; that all men are created equal and independent;
that from that equal creation they derive rights inherent and inalienable, among which are
the preservation of life, and liberty, and the pursuit of happiness; that to secure these
ends, governments are instituted among men, deriving their just power from the consent
of the governed; that whenever any form of government shall become destructive of these
ends, it is the right of the people to alter or to abolish it, and to institute new government,
laying it's foundation on such principles and organizing it's power in such form, as to
them shall seem most likely to effect their safety and happiness. Prudence indeed will

dictate that governments long established should not be changed for light and transient
causes: and accordingly all experience hath shewn that mankind are more disposed to
suffer while evils are sufferable, than to right themselves by abolishing the forms to
which they are accustomed. But when a long train of abuses and usurpations, begun at a
distinguished period, and pursuing invariably the same object, evinces a design to reduce
them to arbitrary power, it is their right, it is their duty, to throw off such government and
to provide new guards for future security. Such has been the patient sufferings of the
colonies; and such is now the necessity which constrains them to expunge their former
systems of government. the history of his present majesty is a history of unremitting
injuries and usurpations, among which no one fact stands single or solitary to contradict
the uniform tenor of the rest, all of which have in direct object the establishment of an
absolute tyranny over these states. To prove this, let facts be submitted to a candid world,
for the truth of which we pledge a faith yet unsullied by falsehood.
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MapReduce Use Case: Word Length

Big 1
Big 1
Big 1
Abridged Declaration of Independence "

A Declaration By the Representatives of the United States of America, in General

Congress Assembled. B i g 1, 1, 1, 1, cee

When in the course of human events it becomes necessary for a people to advance from

that subordination in which they have hitherto remained, and to assume among powers of H 1
the earth the equal and independent station to which the laws of nature and of nature's M e d ium 1I 1I 1I .. M S d um 1
god entitle them, a decent respect to the opinions of mankind requires that they should .
declare the causes which impel them to the change. S ma | I 1’ 1’ 1’ 1’ .o M e d ium 1

We hold these truths to be self-evident; that all men are created equal and independent;
that from that equal creation they derive rights inherent and inalienable, among which are Ti n 1 1 1 1
the preservation of life, and liberty, and the pursuit of happiness; that to secure these y [ By Bt AR
ends, governments are instituted among men, deriving their just power from the consent
of the governed; that whenever any form of government shall become destructive of these
ends, it is the right of the people to alter or to abolish it, and to institute new government,
laying it's foundation on such principles and organizing it's power in such form, as to
them shall seem most likely to effect their safety and happiness. Prudence indeed will

Big 37
Medium 148

Small 1 Small 200
Small 1 Tiny 9

Small 1

dictate that governments long established should not be changed for light and transient .
causes: and accordingly all experience hath shewn that mankind are more disposed to B | g 1 ) 1 ) 1 ) 1 peee
suffer while evils are sufferable, than to right themselves by abolishing the forms to

which they are accustomed. But when a long train of abuses and usurpations, begun at a M e d i um 1 1 1

distinguished period, and pursuing invariably the same object, evinces a design to reduce At Ay A

them to arbitrary power, it is their right, it is their duty, to throw off such government and ot
to provide new guards for future security. Such has been the patient sufferings of the S ma | I 1 ) 1 1 1 ) 1 )

colonies; and such is now the necessity which constrains them to expunge their former

systems of government. the history of his present majesty is a history of unremitting Ti ny 1 1 1 1

injuries and usurpations, among which no one fact stands single or solitary to contradict [l Ti n 1

the uniform tenor of the rest, all of which have in direct object the establishment of an y

absolute tyranny over these states. To prove this, let facts be submitted to a candid world, .

for the truth of which we pledge a faith yet unsullied by falsehood. Tl ny 1
Tiny 1
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MapReduce Use Case: Inverted Indexing

Construction of inverted lists for document search

* Input: documents: (docid, [term, term..]), (docid, [term, ..]), ..

e Output: (term, [docid, docid, ...])
* E.g., (apple, [Foo.txt, Bar.txt, Boo.txt, ...])

© 2010, Jamie Callan
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Inverted Index: Data flow

Foo

Foo map output

This page contains
S0 much text

contains: Foo
much: Foo

text: Foo
This : Foo

Bar

Bar map output

My page contains
text too

contains: Bar
My: Bar
page : Bar
text: Bar

too: Bar

Reduced output

contains: Foo, Bar
much: Foo

My: Bar

page : Foo, Bar
so : Foo

text: Foo, Bar
This : Foo

too: Bar



MapReduce Use Case: Inverted Indexing

A simple approach to creating inverted lists

* Each Map task is a document parser
* Input: A stream of documents

e Output: A stream of (term, docid) tuples
* (long, Foo.txt) (ago, Foo.txt) (and, Foo.txt) ... (once, Bar.txt) (upon, Bar.txt) ...
* We may create internal IDs for words.

 Shuffle sorts tuples by key and routes tuples to Reducers

* Reducers convert streams of keys into streams of inverted lists
* Input: (long, Foo.txt) (long, Bar.txt) (long, Boo.txt) (long, ...) ...
* The reducer sorts the values for a key and builds an inverted list
e Output: (long, [Foo.txt, Bar.txt, ...])

© 2010, Jamie Callan
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Questions?



Sources & References

Excellent intro to MapReduce:

* https://websci.informatik.uni-
freiburg.de/teaching/ws201213/infosys/slides/m3_|1_mapreduce.pdf

* http://www.systems.ethz.ch/sites/default/files/file/BigData_Fall2012/BigData-
2012-M3.pdf

MapReduce & Functional Programming:
* https://courses.cs.washington.edu/courses/cse490h/08au/lectures/mapred.ppt

For the introductory part:
* http://www.cs.ucsb.edu/~tyang/class/140s14/slides/CS140TopicMapReduce.pdf

A lot of details about the Hadoop case:
* www.gatar.cmu.edu/~msakr/15440-
f11/.../Lecturel8 15440 MHH_9Nov_2011.ppt



