
Introduction to Map Reduce

1

Map Reduce: Motivation

“We realized that most of our computations involved applying a map
operation to each logical record in our input in order to compute a set
of intermediate key/value pairs, and then applying a reduce operation
to all the values that shared the same key in order to combine the
derived data appropriately.”

“The issues of how to parallelize the computation, distribute the data,
and handle failures conspire to obscure the original simple
computation with large amounts of complex code to deal with these
issues.”

Dean, Ghemawat. MapReduce: simplified data processing on large
clusters. CACM. ACM 51, 1 January 2008

2

Problem Scope

• Need to scale to 100s or 1000s of computers, each with several
processor cores

• How large is the amount of work?
• Web-Scale data on the order of 100s of GBs to TBs or PBs

• It is likely that the input data set will not fit on a single computer’s hard drive

• Hence, a distributed file system (e.g., Google File System- GFS) is typically
required

3

Problem Scope

• Scalability to large data volumes:
• Scan 1000 TB on 1 node @ 100 MB/s = 24 days

• Scan on 1000-node cluster = 35 minutes

• Required functions
• Automatic parallelization & distribution

• Fault-tolerance

• Status and monitoring tools

• A clean abstraction for programmers
• Functional programming meets

distributed computing

• A batch data processing system

4

Commodity Clusters

• Need to efficiently process large volumes of data by connecting many
commodity computers together to work in parallel

• A theoretical 1000-CPU machine would cost a very large amount of
money, far more than 1000 single-CPU or 250 quad-core machines

5

Mapreduce & Hadoop - History

• 2003: Google publishes about its cluster architecture & distributed file
system (GFS)

• 2004: Google publishes about its MapReduce model used on top of GFS
• Both GFS and MapReduce are written in C++ and are closed-source, with Python

and Java APIs available to Google programmers only

• 2006: Apache & Yahoo! -> Hadoop & HDFS
• open-source, Java implementations of Google MapReduce and GFS with a diverse

set of API available to the public
• Evolved from Apache Lucene/Nutch open-source web search engine

• 2008: Hadoop becomes an independent Apache project
• Yahoo! Uses Hadoop in production

• Today: Hadoop is used as a general-purpose storage and analysis platform
for big data
• Other Hadoop distributions from several vendors including EMC, IBM, Microsoft,

Oracle, Cloudera, etc.
• Many users (http://wiki.apache.org/hadoop/PoweredBy)
• Research and development actively continues...

6

Google Cluster Architecture: Key Ideas

• Single-thread performance doesn’t matter
• For large problems, total throughput/$ is more important than peak

• Stuff breaks
• If you have 1server, it may stay up three years (1,000days).
• If you have 10,000 servers, expect to lose 10 per day.

• “Ultra-reliable” hardware doesn’t really help
• At large scales, the most reliable hardware still fails, albeit less often

• Software still needs to be fault-tolerant
• Commodity machines without fancy hardware give better performance/$

• Have a reliable computing infrastructure from clusters of unreliable
commodity PCs.

• Replicate services across many machines to increase request
throughput and availability.

• Favor price/performance over peak performance.

7

What Makes MapReduce Unique?

• Its simplified programming model which allows the user to quickly write
and test distributed systems

• Its efficient and automatic distribution of data and workload across
machines

• Its flat scalability curve. Specifically, after a Mapreduce program is
written and functioning on 10 nodes, very little-if any- work is required
for making that same program run on 1000 nodes.

• MapReduce ties smaller and more reasonably priced machines together
into a single cost-effective commodity cluster

8

Isolated Tasks

MapReduce divides the workload into multiple independent tasks and
schedules them across cluster nodes

A work performed by each task is done in isolation from one another

The amount of communication which can be performed by tasks is
mainly limited for scalability reasons

The communication overhead required to keep the data on the nodes
synchronized at all times would prevent the model from performing
reliably and efficiently at large scale

9

MapReduce in a Nutshell

• Given:
• a very large dataset
• a well-defined computation task to be performed on elements of this dataset

(preferably, in a parallel fashion on a large cluster)

• Map Reduce framework:
• Just express what you want to compute (map() & reduce()).
• Don’t worry about parallelization, fault tolerance, data distribution, load

balancing (MapReduce takes care of these).
• What changes from one application to another is the actual computation; the

programming structure stays similar.

• In simple terms
• Read lots of data.
• Map: extract something that you care about from each record.
• Shuffle and sort.
• Reduce: aggregate, summarize, filter, or transform.
• Write the results.

• One can use as many Maps and Reduces as needed to model a given
problem.

10

Functional programming
“foundations”

• map in MapReduce ↔ map in FP
• map::(a→b)→[a]→[b]

• Example: Double all numbers in a list.

• > map ((*) 2) [1, 2, 3]
> [2, 4, 6]

• In a purely functional setting, an element of a list being computed by
map cannot see the effects of the computations on other elements.

• If the order of application of a function f to elements in a list is
commutative, then we can reorder or parallelize execution.

11

Note: There is no precise 1-1
correspondence. Please take
this just as an analogy.

Functional programming
“foundations”

• Move over the list, apply f to each element and an accumulator. f
returns the next accumulator value, which is combined with the next
element.

• reduce in MapReduce ↔ fold in FP
• foldl :: (b → a → b) → b → [a] → b

• Example: Sum of all numbers in a list.

• > foldl (+) 0 [1, 2, 3] foldl (+) 0 [1, 2, 3]
> 6

12

Note: There is no precise 1-1
correspondence. Please take
this just as an analogy.

MapReduce Basic Programming Model

• Transform a set of input key-value pairs to a set of output values:
• Map: (k1, v1) → list(k2, v2)

• MapReduce library groups all
intermediate pairs with same key together.

• Reduce: (k2, list(v2)) → list(v2)

13

Word Count

14

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, “1”);

reduce(String key, Iterator values):

// key: a word

// values: a list of counts
int result = 0;

for each v in values:
result += ParseInt(v);

Emit(AsString(result));

map(k1, v1) → list(k2, v2) reduce(k2, list(v2)) → list(v2)

Parallel processing model

15

.

Execution overview

16

Read as part of this lecture!
Jeffrey Dean and Sanjay
Ghemawat. 2008. MapReduce:
simplified data processing on
large clusters. Commun. ACM
51, 1 (January 2008), 107-113.

• Master – Workers
• Master coordinates
• Local Write / remote reads

MapReduce Scheduling

• One master, many workers
• Input data split into M map tasks (typically 64 MB (~ chunk size in GFS))

• Reduce phase partitioned into R reduce tasks (hash(k) mod R)

• Tasks are assigned to workers dynamically

• Master assigns each map task to a free worker
• Considers locality of data to worker when assigning a task

• Worker reads task input (often from local disk)

• Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker
• Worker reads intermediate k/v pairs from map workers

• Worker sorts & applies user’s reduce operation to produce the output

17

Data Distribution

• In a MapReduce cluster, data is distributed to all the nodes of the
cluster as it is being loaded in

• An underlying distributed file systems (e.g., GFS) splits large data files
into chunks which are managed by different nodes in the cluster

• Even though the file chunks are distributed across several machines,
they form a single namespace

18

Input data: A large file

Node 1

Chunk of input data

Node 2

Chunk of input data

Node 3

Chunk of input data

Partitions

• In MapReduce, intermediate output values are not usually reduced together

• All values with the same key are presented to a single Reducer together

• More specifically, a different subset of intermediate key space is assigned to
each Reducer

• These subsets are known as partitions

Different colors represent

different keys (potentially)

from different Mappers

Partitions are the input to Reducers

Word count again

20

Choosing M and R

• M = number of map tasks, R = number of reduce tasks

• Larger M, R: creates smaller tasks, enabling easier load balancing and
faster recovery (many small tasks from failed machine)

• Limitation: O(M+R) scheduling decisions and O(M*R) in-memory
state at master
• Very small tasks not worth the startup cost

• Recommendation:
• Choose M so that split size is approximately 64 MB

• Choose R a small multiple of the number of workers; alternatively choose R a
little smaller than #workers to finish reduce phase in one “wave”

21

MapReduce Fault Tolerance

• On worker failure:
• Master detects failure via periodic heartbeats.

• Both completed and in-progress map tasks on that worker should be re-
executed (→ output stored on local disk).

• Only in-progress reduce tasks on that worker should be re- executed (→
output stored in global file system).

• All reduce workers will be notified about any map re-executions.

• On master failure:
• State is check-pointed to GFS: new master recovers & continues.

• Robustness:
• Example: Lost 1600 of 1800 machines once, but finished fine.

22

MapReduce Data Locality

• Goal: To conserve network bandwidth.

• In GFS, data files are divided into 64MB blocks and 3 copies of each
are stored on different machines.

• Master program schedules map() tasks based on the location of these
replicas:
• Put map() tasks physically on the same machine as one of the input replicas

(or, at least on the same rack / network switch).

• This way, thousands of machines can read input at local disk speed.
Otherwise, rack switches would limit read rate.

23

Stragglers & Backup Tasks

• Problem: “Stragglers” (i.e., slow workers) significantly lengthen the
completion time.

• Solution: Close to completion, spawn backup copies of the remaining
in-progress tasks.
• Whichever one finishes first, “wins”.

• Additional cost: a few percent more resource usage.

• Example: A sort program without backup = 44% longer.

24

Other Practical Extensions

• User-specified combiner functions for partial combination within a
map task can save network bandwidth (~ mini-reduce)
• Example: WordCount

• User-specified partitioning functions for mapping intermediate key
values to reduce workers (by default: hash(key) mod R)
• Example: hash(Hostname(urlkey)) mod R

• Ordering guarantees: Processing intermediate k/v pairs in increasing
order
• Example: reduce of WordCount outputs ordered results.

• Custom input and output format handlers

• Single-machine execution option for testing & debugging

25

Basic MapReduce Program Design

• Tasks that can be performed independently on a data object, large
number of them: Map

• Tasks that require combining of multiple data objects: Reduce

• Sometimes it is easier to start program design with Map, sometimes
with Reduce

• Select keys and values such that the right objects end up together in
the same Reduce invocation

• Might have to partition a complex task into multiple MapReduce sub-
tasks

26

MapReduce vs. Traditional RDBMS

MapReduce Traditional RDBMS

Data size Petabytes Gigabytes

Access Batch Interactive and batch

Updates
Write once, read many
times

Read and write many
times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear
Non-linear (general
SQL)

27

More Hadoop details

28

Hadoop

• Since its debut on the computing stage, MapReduce has
frequently been associated with Hadoop

• Hadoop is an open source implementation of MapReduce and is
currently enjoying wide popularity

• Hadoop presents MapReduce as an analytics engine and under
the hood uses a distributed storage layer referred to as Hadoop
Distributed File System (HDFS)

• HDFS mimics Google File System (GFS)

29

Hadoop MapReduce: A Closer Look

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local

HDFS store

file

file

InputFormat

Split Split Split

RR RR RR

Map Map Map

Input (K, V) pairs

Partitioner

Intermediate (K, V) pairs

Sort

Reduce

OutputFormat

Files loaded from local HDFS store

RecordReaders

Final (K, V) pairs

Writeback to local

HDFS store

Node 1 Node 2

Shuffling

Process

Intermediate

(K,V) pairs

exchanged by

all nodes

Input Files

• Input files are where the data for a MapReduce task is initially stored

• The input files typically reside in a distributed file system (e.g. HDFS)

• The format of input files is arbitrary
• Line-based log files

• Binary files

• Multi-line input records

• Or something else entirely

31

file

file

InputFormat

• How the input files are split up and read is defined by the InputFormat

• InputFormat is a class that does the following:

• Selects the files that should be used for input

• Defines the InputSplits that break a file

• Provides a factory for RecordReader objects that
read the file

32

file

file

InputFormat

Files loaded from local HDFS store

InputFormat Types

Several InputFormats are provided with Hadoop:

33

InputFormat Description Key Value

TextInputFormat Default format;
reads lines of text
files

The byte
offset of the
line

The line contents

KeyValueInputFormat Parses lines into
(K, V) pairs

Everything up
to the first tab
character

The remainder of
the line

SequenceFileInputFormat A Hadoop-specific
high-performance
binary format

user-defined user-defined

Input Splits

• An input split describes a unit of work that comprises a single map task in a
MapReduce program

• By default, the InputFormat breaks a file up into 64MB splits

• By dividing the file into splits, we allow
several map tasks to operate on a single
file in parallel

• If the file is very large, this can improve
performance significantly through parallelism

• Each map task corresponds to a single input split

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RecordReader

• The input split defines a slice of work but does not describe how
to access it

• The RecordReader class actually loads data from its source and
converts it into (K, V) pairs suitable for reading by Mappers

• The RecordReader is invoked repeatedly
on the input until the entire split is consumed

• Each invocation of the RecordReader leads
to another call of the map function defined
by the programmer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Mapper and Reducer

• The Mapper performs the user-defined work
of the first phase of the MapReduce program

• A new instance of Mapper is created
for each split

• The Reducer performs the user-defined work
of the second phase of the MapReduce program

• A new instance of Reducer is created for each partition

• For each key in the partition assigned to a Reducer, the
Reducer is called once

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

Partitioner

• Each mapper may emit (K, V) pairs
to any partition

• Therefore, the map nodes must all agree on
where to send different pieces of
intermediate data

• The partitioner class determines which
partition a given (K,V) pair will go to

• The default partitioner computes a hash value for a
given key and assigns it to a partition based on
this result

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

Sort

• Each Reducer is responsible for reducing
the values associated with (several)
intermediate keys

• The set of intermediate keys on a single
node is automatically sorted by
MapReduce before they are presented
to the Reducer

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

OutputFormat

• The OutputFormat class defines the
way (K,V) pairs produced by Reducers
are written to output files

• The instances of OutputFormat provided by
Hadoop write to files on the local disk or in HDFS

• Several OutputFormats are provided by Hadoop:

file

file

InputFormat

Split Split Split

Files loaded from local HDFS store

RR RR RR

Map Map Map

Partitioner

Sort

Reduce

OutputFormat

OutputFormat Description

TextOutputFormat Default; writes lines in "key \t
value" format

SequenceFileOutputFormat Writes binary files suitable for
reading into subsequent
MapReduce jobs

NullOutputFormat Generates no output files

Questions?

40

Exercise

41

Exercise

• Read the original Map Reduce paper
• Answer some questions

• Implement “friends count”

• Fill “word length” (why fill, anyway?)

• Understand and run “inverted indexes”

• Code available as a Maven or
Eclipse project: Just run locally

42

MapReduce Use Case: Word Length

Big 37
Medium 148
Small 200
Tiny 9

43

Big = Yellow = 10+ letters
Medium = Red = 5..9 letters
Small = Blue = 2..4 letters
Tiny = Pink = 1 letter

MapReduce Use Case: Word Length

Split the document into
chunks and process
each chunk
on a different computer

44

MapReduce Use Case: Word Length

45

Big 1,1,1,1,…
Medium 1,1,1,..
Small 1,1,1,1,..
Tiny 1,1,1,1,…

Big 1,1,1,1,…
Medium 1,1,1,..
Small 1,1,1,1,..
Tiny 1,1,1,1,…

Big 1
Big 1
Big 1
…

Medium 1
Medium 1
…

Small 1
Small 1
Small 1
…

Tiny 1
Tiny 1
Tiny 1
…

Big 37
Medium 148
Small 200
Tiny 9

MapReduce Use Case: Inverted Indexing

Construction of inverted lists for document search

• Input: documents: (docid, [term, term..]), (docid, [term, ..]), ..

• Output: (term, [docid, docid, …])
• E.g., (apple, [Foo.txt, Bar.txt, Boo.txt, …])

© 2010, Jamie Callan 46

Inverted Index: Data flow

This page contains

so much text

My page contains

text too

Foo

Bar

contains: Bar

My: Bar

page : Bar

text: Bar

too: Bar

contains: Foo

much: Foo

page : Foo

so : Foo

text: Foo

This : Foo
contains: Foo, Bar

much: Foo

My: Bar

page : Foo, Bar

so : Foo

text: Foo, Bar

This : Foo

too: Bar

Reduced output

Foo map output

Bar map output

MapReduce Use Case: Inverted Indexing

A simple approach to creating inverted lists

• Each Map task is a document parser
• Input: A stream of documents

• Output: A stream of (term, docid) tuples
• (long, Foo.txt) (ago, Foo.txt) (and, Foo.txt) … (once, Bar.txt) (upon, Bar.txt) …

• We may create internal IDs for words.

• Shuffle sorts tuples by key and routes tuples to Reducers

• Reducers convert streams of keys into streams of inverted lists
• Input: (long, Foo.txt) (long, Bar.txt) (long, Boo.txt) (long, …) …

• The reducer sorts the values for a key and builds an inverted list

• Output: (long, [Foo.txt, Bar.txt, …])

© 2010, Jamie Callan 48

Questions?

49

Sources & References

Excellent intro to MapReduce:
• https://websci.informatik.uni-

freiburg.de/teaching/ws201213/infosys/slides/m3_l1_mapreduce.pdf
• http://www.systems.ethz.ch/sites/default/files/file/BigData_Fall2012/BigData-

2012-M3.pdf

MapReduce & Functional Programming:

• https://courses.cs.washington.edu/courses/cse490h/08au/lectures/mapred.ppt

For the introductory part:
• http://www.cs.ucsb.edu/~tyang/class/140s14/slides/CS140TopicMapReduce.pdf

A lot of details about the Hadoop case:
• www.qatar.cmu.edu/~msakr/15440-

f11/.../Lecture18_15440_MHH_9Nov_2011.ppt

50

