Back to Hadoop

What is Hadoop?

* Hadoop is an ecosystem of tools for processing “Big Data”.
* Hadoop is an open source project.

*Apache
Software Foundation

http://www.apache.org/

A family of tools

Distributed computation framework (data processing model
MapReduce : :
and execution environment)
HDFS Distributed file system
HBase Distributed, column-oriented database
Hive Distributed data warehouse
pi Higher-level data flow language and parallel execution
g framework
ZooKeeper Distributed coordination service
Avro Data serialization system (RPC and persistent data storage)
5406 Tool for bulk data transfer between structured data stores
qo0p (e.g., RDBMS) and HDFS
Oozie Complex job workflow service
Chukwa System for collecting management data
Mahout Machine learning and data mining library
BigTop Packaging and testing

DBMS/SQL

SELECT * FROM Customers
WHERE Country='Mexico’;

SELECT columnl, column?2....columnN
FROM table_name
WHERE CONDITION
ORDER BY column_name {ASC|DESC};

artist_id artist_name
! Boro Referential
2 Cher .
Integrity
3 Muno Bettencourt
Link Broken
artist_id album_id albwn_name
3 1 Schizophonic
4 2 Eat the nich
3 3 Crave (zingle)

Hypothetical Relational Database Model

PublD Publisher PubAddress

03-4472822 | Random House 123 4th Street, New York

04-7733903 | Wiley and Sons 45 Lincoln Bivd, Chicago

03-4859223 | OReilly Press 77 Boston Ave, Cambridge

03-3920886 | City Lights Books | 99 Market, San Francisco

Author|D AuthorName AuthorBDay

345-28-2938 | Haile Selassie 14-Aug-92
392-48-9965 | Jom Blow 14-Mar-15
454-22-4012 | Sally Hemmings 12-Sept-70
663-58-1254 | Hannah Arendt 12-Mar-06

AuthorlD PublD
1-34532-482-1 | 345-28-2938 | 03-4472822 | 1980 Cald Fusion for Dummies
1-38482-995-1 392-48-9965 04-7733903 1985 Macrame and Straw Tying
2-35821-499-4 | 454-22.4012 | 03-4859223 1952 Fluid Dynamics of Aquaducts
1-38278-293-4 B663-59-1264 | 03-3920886 1967 Beads, Baskets & Revolution

areallor
nothing

Onlyvalid data
is saved

Isolation:

Transactions
do notaffect

each other

Durability:

Written data
willnotbe lost

MapReduce vs.

Traditional RDBMS

MapReduce Traditional RDBMS
Data size Petabytes Gigabytes
Access Batch Interactive and batch
Updates erte once, read many Rgad and write many
times times
Structure Dynamic schema Static schema
Integrity Low High (normalized data)
Scaling Linear Non-linear (general

sQL)

Message Passing Interface (MPI)

 Communication protocol for programming parallel computers.
* Point-to-point and collective communication

* “a message-passing application programmer interface, together with
protocol and semantic specifications for how its features must behave in any
implementation.”

* Goals: high performance, scalability, and portability.
* Dominant model used in high-performance computing

* Virtual topologies o [t [z2]s3
(0,0} (0,1} (0,2) (0,3)

* Predefined Naming schemas o

* Graph, Cartesian (e.g., refer to “;” “;) [l":) (11;3)
other processes by coordinates) e | ey | e | @

12 13 14 15

(3,0) (3,1) (3,2) (3,3)

Message Passing Interface (MPI)

e User writes a single program
that runs on all computers

* Data on a computer is
separate from data on others
 Explicit data transfer
* Sync points

if (1 am processor A) then
add a bunch of numbers
else if (1 am processor B) then
multiply a matrix times a vector
end

if (1am processor A) then
call MPI_Send (X)
else if (1 am processor B) then
call MPI_Recv (X)
end

#include <mpi.h>

include <stdlib.h>
#include <stdio.h>
#include <time.h>

int main (int argc, char *argv[]);
void timestamp ();

int main (int argc, char *argv([] }{

int count;

float data[100];

int dest;

inti;

intierr;

int num_procs;

int rank;

int source;

MPI_Status status;

int tag;

float value[200];
/*

Initialize MPI.
*/

ierr = MPI_Init (&argc, &argv);
/*

Determine this process's rank.
*/

ierr = MPI_Comm_rank (MPI_COMM_WORLD,
/*

Determine the number of available processes.
*/
/*

Have Process 0 say hello.

*/

if (rank == 0){
timestamp ();
printf ("\n");

printf ("BONES:\n");
printf (" Cversion\n");
printf (" An MPI example program.\n");
printf (" The number of processes available is %d\n", num_procs);
}
/*

Process 0 expects up to 200 real values, from any source.
*/
if (rank==0) {
source =1;
tag = 55;

ierr = MPI_Recv (value, 200, MPI_FLOAT, MPI_ANY_SOU
MPI_COMM_WORLD, &status);
ierr = MPI_Get_count (&status, MPI_FLOAT, &count);
printf ("P:%d Got %d elements.\n", rank, count);
printf ("P:%d value[5] = %f\n", rank, value[5]);
}
/*
Process 1 sends 100 real values to process 0.
*/
else if (rank ==1){
printf ("\n");
printf ("P:%d - setting up data to send to process 0.\n",

for (i=0;i<100; i++) {
datali] = 1i;
}

dest =0;

/*
Any other process is idle.
*
/
else {
printf ("\n");
printf ("P:%d - MPI has no work for me!\n", rank);
}

/*
Terminate MPI.
*
/
ierr = MPI_FinaIize ();
/*
Terminate.
*/
if (rank==0) {
printf ("\n");

printf ("BONES:\n");

printf (" Normal end of execution.\n");
printf ("\n");

timestamp ();

}

return O;

}

tag = 55;

ierr = MPI_Send (data, 100, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);

}

ierr = MPI_Comm_size (MPI_COMM_WORLD, &num_procs);

http://people.sc.fsu.edu/~jburkardt/c_src/mpi/bones_mpi.c

A demonstration of the use of MPI by a C program.
This program should be run on at least two processes.
Any processes beyond the first two will not be given any®*work.

A Summary

MPI

MapReduce

DBMS/SQL

What they are

A general parrellel
programming paradigm

A programming paradigm
and its associated execution
system

A system to store, manipulate
and serve data.

Programming Model

Messages passing between
nodes

Restricted to Map/Reduce
operations

Declarative on data
query/retrieving;
Stored procedures

Data organization

No assumption

"files" can be sharded

Organized datastructures

Data to be manipulated

Any

k,v pairs: string

Tables with rich types

Execution model

Nodes are independent

Map/Shuffle/Reduce
Checkpointing/Backup
Physical data locality

Transaction
Query/operation optimization
Materialized view

Usability

Steep learning curve*;
difficult to debug

Simple concept
Could be hard to optimize

Declarative interface;
Could be hard to debug in
runtime

Key selling point

Flexible to accommodate
various applications

Plow through large amount
of data with commodity
hardware

Interactive querying the data;
Maintain a consistent view
across clients

Programming Model

Declarative

Procedural

MAP REDUCE
MPI

>

Flat Raw Types

Data Organization

Structured

10

Questions?

Sources & References

MPI Examples
* http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

Tool echosystem
* www.dbs.ifi.Imu.de/.../BigData...16/Chapter-
3 DFS_MapReduce Hadoop_ part2.pdf

