
Back to Hadoop

1

What is Hadoop?

• Hadoop is an ecosystem of tools for processing “Big Data”.

• Hadoop is an open source project.

2

A family of tools

MapReduce
Distributed computation framework (data processing model
and execution environment)

HDFS Distributed file system

HBase Distributed, column-oriented database

Hive Distributed data warehouse

Pig
Higher-level data flow language and parallel execution
framework

ZooKeeper Distributed coordination service

Avro Data serialization system (RPC and persistent data storage)

Sqoop
Tool for bulk data transfer between structured data stores
(e.g., RDBMS) and HDFS

Oozie Complex job workflow service

Chukwa System for collecting management data

Mahout Machine learning and data mining library

BigTop Packaging and testing
3

DBMS/SQL

4

SELECT * FROM Customers
WHERE Country='Mexico';

SELECT column1, column2....columnN
FROM table_name
WHERE CONDITION
ORDER BY column_name {ASC|DESC};

Referential
Integrity

MapReduce vs. Traditional RDBMS

MapReduce Traditional RDBMS

Data size Petabytes Gigabytes

Access Batch Interactive and batch

Updates
Write once, read many
times

Read and write many
times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear
Non-linear (general
SQL)

5

Message Passing Interface (MPI)

• Communication protocol for programming parallel computers.
• Point-to-point and collective communication

• ”a message-passing application programmer interface, together with
protocol and semantic specifications for how its features must behave in any
implementation.”

• Goals: high performance, scalability, and portability.

• Dominant model used in high-performance computing

• Virtual topologies
• Predefined Naming schemas

• Graph, Cartesian (e.g., refer to
other processes by coordinates)

6

Message Passing Interface (MPI)

• User writes a single program
that runs on all computers

• Data on a computer is
separate from data on others
• Explicit data transfer

• Sync points

7

if (I am processor A) then
add a bunch of numbers

else if (I am processor B) then
multiply a matrix times a vector

end

if (I am processor A) then
call MPI_Send (X)

else if (I am processor B) then
call MPI_Recv (X)

end

8

include <mpi.h>
include <stdlib.h>
include <stdio.h>
include <time.h>

int main (int argc, char *argv[]);
void timestamp ();

int main (int argc, char *argv[]){
int count;
float data[100];
int dest;
int i;
int ierr;
int num_procs;
int rank;
int source;
MPI_Status status;
int tag;
float value[200];

/*
Initialize MPI.

*/
ierr = MPI_Init (&argc, &argv);

/*
Determine this process's rank.

*/
ierr = MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/*
Determine the number of available processes.

*/
ierr = MPI_Comm_size (MPI_COMM_WORLD, &num_procs);

/*
Have Process 0 say hello.

*/

if (rank == 0){
timestamp ();
printf ("\n");
printf ("BONES:\n");
printf (" C version\n");
printf (" An MPI example program.\n");
printf (" The number of processes available is %d\n", num_procs);

}
/*
Process 0 expects up to 200 real values, from any source.

*/
if (rank == 0) {

source = 1;
tag = 55;

ierr = MPI_Recv (value, 200, MPI_FLOAT, MPI_ANY_SOURCE, tag,
MPI_COMM_WORLD, &status);

ierr = MPI_Get_count (&status, MPI_FLOAT, &count);
printf ("P:%d Got %d elements.\n", rank, count);
printf ("P:%d value[5] = %f\n", rank, value[5]);

}
/*
Process 1 sends 100 real values to process 0.

*/
else if (rank == 1){

printf ("\n");
printf ("P:%d - setting up data to send to process 0.\n", rank);

for (i = 0; i < 100; i++) {
data[i] = i;

}

dest = 0;
tag = 55;
ierr = MPI_Send (data, 100, MPI_FLOAT, dest, tag, MPI_COMM_WORLD);

}

/*
Any other process is idle.

*/
else {

printf ("\n");
printf ("P:%d - MPI has no work for me!\n", rank);

}
/*
Terminate MPI.

*/
ierr = MPI_Finalize ();

/*
Terminate.

*/
if (rank == 0) {

printf ("\n");
printf ("BONES:\n");
printf (" Normal end of execution.\n");
printf ("\n");
timestamp ();

}
return 0;

}

…

A demonstration of the use of MPI by a C program.
This program should be run on at least two processes.
Any processes beyond the first two will not be given any work.

http://people.sc.fsu.edu/~jburkardt/c_src/mpi/bones_mpi.c

A Summary

9

10

P
ro

gr
am

m
in

g
M

o
d

el

Data Organization

D
e

cl
ar

at
iv

e

StructuredFlat Raw Types

P
ro

ce
d

u
ra

l

Questions?

11

Sources & References

MPI Examples
• http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

Tool echosystem
• www.dbs.ifi.lmu.de/.../BigData...16/Chapter-

3_DFS_MapReduce_Hadoop_part2.pdf

12

