
Google File System (GFS) and 
Hadoop Distributed File System 
(HDFS) 
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Hadoop: Architectural Design Principles 

• Linear scalability
• More nodes can do more work within the same time – Linear on data size, 

linear on compute resources 

• Move computation to data
• Minimize expensive data transfers 

• Data is large, programs are small 

• Reliability and Availability: Failures are common
• Persistent storage

• Simple computational model (MapReduce) 
• Hides complexity in efficient execution framework

• Streaming data access (avoid random reads) 
• More efficient than seek-based data access 
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Need for a 
suitable file 
system



A Typical 
Cluster Architecture 
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Failures in literature

• LANL data (DSN 2006)
• Data collected over 9 years
• 4750 machines, 24101 CPUs Distribution of failures 

• Hardware ~ 60%, 
• Software ~ 20%, 
• Network/Environment/Humans ~ 5%, 
• Aliens ~ 25%

• Depending on a system, failures occurred between
once a day to once a month 

• Most of the systems in the survey were the cream of the crop at their time 

• Disk drive failure analysis (FAST 2007)
• Annualized Failure Rates vary from 1.7% for one year old drives to over 8.6% in 

three year old ones
• Utilization affects failure rates only in very old disk drive populations
• Temperature change can cause increase in failure rates but mostly for old drives 

• Memory also fails (DRAM errors analysis, SIGMETRICS 2009)
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GFS & HDFS 

Distributed file systems manage the storage 
across a network of machines. 

• GFS
• Implemented especially for meeting the rapidly 

growing demands of Google’s data processing needs.
• The Google File System, Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung, SOSP’03

• HDFS
• Hadoop has a general-purpose file system abstraction (i.e., can integrate with 

several storage systems such as the local file system, HDFS, Amazon S3, etc.). 
• HDFS is Hadoop’s flagship file system.

• Implemented for the purpose of running Hadoop’s MapReduce applications. 

• Based on work done by Google in the early 2000s
• The Hadoop Distributed File System, Konstantin Shvachko, Hairong Kuang, 

Sanjay Radia, Robert Chansler, IEEE2010
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Roadmap
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Assumptions / Requirements

Design choices

Architecture / Implementation



Assumptions

• “Modest” number of very large files 

• Data access
• write-once, read-many-times pattern
• Large reads: Time to read the whole dataset is more important
• Mostly, files are appended to, perhaps concurrently 

• High sustained throughput favored over low latency  

• Commodity hardware 
• Need fault-tolerance
• High component failure rates: Inexpensive commodity components fail all the 

time 

• Not a good fit for 
• low-latency data access 
• lots of small files
• multiple writers, arbitrary file modifications 
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Section 2.1: The Google File 
System, Sanjay Ghemawat, 
Howard Gobioff, and Shun-
Tak Leung, SOSP’03



Design

• Files stored as chunks
• Fixed size (64MB) 

• Reliability through replication
• Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata 
• Simple centralized management 

• No data caching
• Little benefit due to large data sets, streaming reads

• Familiar interface, but customize the API
• Simplify the problem; focus on Google apps

• Add snapshot and record append operations 
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Overview 

9



Namenodes and Datanodes

• Two types of nodes:
• One Namenode/Master

• Multiple Datanodes/Chunkservers

• Name node manages the filesystem namespace. 
• File system tree and metadata, stored persistently

• Block locations, stored transiently 

• Data nodes store and retrieve data blocks when 
they are told to by clients or the Namenode. 

• Data nodes report back to the Namenode
periodically with lists of blocks that they are storing. 
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HDFS/GFS – Hadoop/MapReduce 
Component Naming Conventions 

• MapReduce daemons
• JobTracker: client communication, job scheduling, resource management, 

lifecycle coordination (~ master in Google MR)

• TaskTrackers: task execution module (~ worker in Google MR) 

• HDFS daemons
• NameNode: namespace and block management (~ master in GFS)

• DataNodes: block replica container (~ chunkserver in GFS) 
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Blocks 

• Files are broken into block-sized chunks (64 MB by default) 

• With the large block abstraction: 
• A file can be larger than any single disk in the network 

• Storage subsystem is simplified (e.g., metadata bookkeeping) 

• Replication for fault-tolerance and availability is facilitated

• Reduces clients’ need to interact with the master 
• Reads and writes on the same chunk require only one initial request to the master for 

chunk location information. 

• Applications mostly read and write large files sequentially 

• Client can reduce network overhead by keeping a persistent TCP connection 
to the chunkserver over an extended period of time 

• Reduces the size of the metadata stored on the master. 
• This allows us to keep the metadata in memory 

• Potential disadvantage: Chunkserver becomes hotspot with small file
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Single master 

• Advantage: simplified design
• Global knowledge of the system

• Problem:
• Single point of failure

• Scalability bottleneck 

• GFS solutions: 
• Shadow masters 

• Minimize master involvement 
• never move data through it, use only for metadata

• and cache metadata at clients 

• large chunk size

• master delegates authority to primary replicas in data mutations (chunk leases)
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Metadata

• Global metadata is stored on the master 
• File and chunk namespaces
• Mapping from files to chunks
• Locations of each chunk’s replicas
• Access control information

• All in memory (64 bytes / chunk)
• Fast 
• Easily accessible (fast scan, e.g., for balancing)

• Master has an operation log for persistent logging of critical 
metadata updates 
• Persistent on local disk 
• Replicated
• Checkpoints for faster recovery 
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Master’s Responsibilities 

• Metadata storage 

• Namespace management/locking 

• Periodic communication with chunkservers
• give instructions, collect state, track cluster health 

• Chunks management
• Creation

• place new replicas on chunkservers with below-average disk space utilization 
• limit “recent” creations on each chunkserver. It predicts imminent heavy write traffic
• spread replicas of a chunk across racks. 

• Re-replication: number of available replicas falls below a user-specified goal. 
• a chunkserver becomes unavailable, corrupted replica, disks is disabled because of 

errors, replication goal is increased. 

• Rebalancing
• examine the current replica distribution and move replicas for better disk space and load 

balancing. 
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Master’s Responsibilities 

• Garbage Collection 
• simpler, more reliable than traditional file delete 

• master logs the deletion, renames the file to a hidden name 

• lazily garbage collects hidden files
• Periodically ask the chunkservers which blocks they have. 

Those that cannot be referenced anymore can be removed.

• Stale replica deletion
• detect “stale” replicas using chunk version numbers 
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Mutations 

• Mutation = write or record append 
• Must be done for all replicas 

• Goal: minimize master involvement

• Lease mechanism: 
• Master picks one replica as primary; gives it a “lease” for mutations 

• Data flow decoupled from control flow 
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Mutation is not 
random access



Caches

• Data is not cached by clients (only metadata is)
• Access pattern: stream through huge files

• Working set too large to be cached

• System is highly simplified: no cache coherence problem!

• Chunkservers do cache data indirectly
• Chunks are stored as local files and so Linux’s buffer cache already keeps 

frequently accessed data in memory 
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GFS - Overview
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Read:

• The client sends the master the file name and chunk index. 
• Using the fixed chunk size, the client translates the file name and byte offset 

specified by the application into a chunk index within the file.

• The master replies with a chunk handle and locations of the replicas. 
• The client caches this information. 

20



• The client sends a request to one of the replicas, 
• most likely the closest one. 
• The request specifies the chunk handle and a byte range within that chunk. 
• Further reads of the same chunk require no more client-master interaction 

• The client typically asks for multiple chunks in the same request
• The master can also include the information for chunks immediately 

following those requested. 
• Sidesteps several future client-master interactions. 
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Write

• A primary replica holds a lease: coordinate writing on a chunk 

• Separate data flow from control flow
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Write

• The master grants a chunk lease to one of the replicas, which we call 
the primary. 
• The primary picks a serial order for all mutations to the chunk.

• All replicas follow this order when applying mutations. 

• A lease has an initial timeout of 60 seconds.
• The primary can request and typically receive extensions

• HeartBeat messages regularly exchanged between master and chunkservers. 

• If the master loses communication with a primary, it can safely grant a new 
lease to another replica after the old lease expires. 
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Write

• The client asks the master which chunkserver holds the current lease for the 
chunk and the locations of the other replicas.
• If no one has a lease, the master grants one to a replica it chooses 

• The master replies with the identity of the primary and the locations of the 
other (secondary) replicas. 
• The client caches this data for future mutations. 
• It needs to contact the master again only when the primary becomes unreachable 

or replies that it no longer holds a lease 
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Write

• The client pushes the data to all the replicas. 

• Each chunkserver will store the data in an internal LRU buffer. 
• Decoupling the data flow from the control flow, improve performance by 

scheduling the expensive data flow based on the network topology 

• Once all the replicas have acknowledged receiving the data, the client 
sends a write request to the primary. 

25

Primary
Replica

Secondary
Replica

Secondary
Replica



Write

• Once all the replicas have acknowledged receiving the data, the client 
sends a write request to the primary. 
• The request identifies the data pushed earlier to all of the replicas. 

• The primary assigns consecutive serial numbers to all the mutations it 
receives, possibly from multiple clients, which provides serialization. 
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Write

• The primary forwards the write request to all secondary replicas.

• Each secondary replica applies mutations in the same serial number order 
assigned by the primary. 

• The secondaries all reply to the primary indicating that they have completed 
the operation. 

• The primary replies to the client. 
• Any errors encountered at any of the replicas are reported to the client. 
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Write: Decouple data and control flow

• Control flows from client to the 
primary and then to all secondaries

• Data is pushed linearly along a 
carefully picked chain of chunkservers
in a pipelined fashion. 
• Avoid network bottlenecks and high-latency links (e.g., inter-switch links): 

each machine forwards data to the “closest” machine in the network. 

• Once a chunkserver receives some data, it starts forwarding 
immediately. 
• Switched network with full-duplex links. 

• Sending the data immediately does not reduce the receive rate. 
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Write: Time estimation

• Ignore network congestion

• Transfer B bytes to R replicas 

• T is the network throughput

• L is latency to transfer bytes between two machines. 

• E.g., network links are typically 100 Mbps (T), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms. (2003)
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Questions?
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Sources & References

General intro to bigdata

• http://www.systems.ethz.ch/sites/default/files/file/BigData_Fall2012/BigDat
a-2012-M5-1%20updated.pdf

Storage systems and big data

• www.cs.colostate.edu/~cs655/lectures/CS655-L4-StorageSystems.pdf

Specific on GFS

• https://courses.cs.washington.edu/courses/cse490h/08wi/lecture/lec6.ppt

Specific on GFS

• http://prof.ict.ac.cn/DComputing/uploads/2013/DC_4_0_GFS_ICT.pdf

33


