
Google File System (GFS) and
Hadoop Distributed File System
(HDFS)

1

Hadoop: Architectural Design Principles

• Linear scalability
• More nodes can do more work within the same time – Linear on data size,

linear on compute resources

• Move computation to data
• Minimize expensive data transfers

• Data is large, programs are small

• Reliability and Availability: Failures are common
• Persistent storage

• Simple computational model (MapReduce)
• Hides complexity in efficient execution framework

• Streaming data access (avoid random reads)
• More efficient than seek-based data access

2

Need for a
suitable file
system

A Typical
Cluster Architecture

3

Failures in literature

• LANL data (DSN 2006)
• Data collected over 9 years
• 4750 machines, 24101 CPUs Distribution of failures

• Hardware ~ 60%,
• Software ~ 20%,
• Network/Environment/Humans ~ 5%,
• Aliens ~ 25%

• Depending on a system, failures occurred between
once a day to once a month

• Most of the systems in the survey were the cream of the crop at their time

• Disk drive failure analysis (FAST 2007)
• Annualized Failure Rates vary from 1.7% for one year old drives to over 8.6% in

three year old ones
• Utilization affects failure rates only in very old disk drive populations
• Temperature change can cause increase in failure rates but mostly for old drives

• Memory also fails (DRAM errors analysis, SIGMETRICS 2009)

4

GFS & HDFS

Distributed file systems manage the storage
across a network of machines.

• GFS
• Implemented especially for meeting the rapidly

growing demands of Google’s data processing needs.
• The Google File System, Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung, SOSP’03

• HDFS
• Hadoop has a general-purpose file system abstraction (i.e., can integrate with

several storage systems such as the local file system, HDFS, Amazon S3, etc.).
• HDFS is Hadoop’s flagship file system.

• Implemented for the purpose of running Hadoop’s MapReduce applications.

• Based on work done by Google in the early 2000s
• The Hadoop Distributed File System, Konstantin Shvachko, Hairong Kuang,

Sanjay Radia, Robert Chansler, IEEE2010

5

Roadmap

6

Assumptions / Requirements

Design choices

Architecture / Implementation

Assumptions

• “Modest” number of very large files

• Data access
• write-once, read-many-times pattern
• Large reads: Time to read the whole dataset is more important
• Mostly, files are appended to, perhaps concurrently

• High sustained throughput favored over low latency

• Commodity hardware
• Need fault-tolerance
• High component failure rates: Inexpensive commodity components fail all the

time

• Not a good fit for
• low-latency data access
• lots of small files
• multiple writers, arbitrary file modifications

7

Section 2.1: The Google File
System, Sanjay Ghemawat,
Howard Gobioff, and Shun-
Tak Leung, SOSP’03

Design

• Files stored as chunks
• Fixed size (64MB)

• Reliability through replication
• Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata
• Simple centralized management

• No data caching
• Little benefit due to large data sets, streaming reads

• Familiar interface, but customize the API
• Simplify the problem; focus on Google apps

• Add snapshot and record append operations

8

Overview

9

Namenodes and Datanodes

• Two types of nodes:
• One Namenode/Master

• Multiple Datanodes/Chunkservers

• Name node manages the filesystem namespace.
• File system tree and metadata, stored persistently

• Block locations, stored transiently

• Data nodes store and retrieve data blocks when
they are told to by clients or the Namenode.

• Data nodes report back to the Namenode
periodically with lists of blocks that they are storing.

10

HDFS/GFS – Hadoop/MapReduce
Component Naming Conventions

• MapReduce daemons
• JobTracker: client communication, job scheduling, resource management,

lifecycle coordination (~ master in Google MR)

• TaskTrackers: task execution module (~ worker in Google MR)

• HDFS daemons
• NameNode: namespace and block management (~ master in GFS)

• DataNodes: block replica container (~ chunkserver in GFS)

11

Blocks

• Files are broken into block-sized chunks (64 MB by default)

• With the large block abstraction:
• A file can be larger than any single disk in the network

• Storage subsystem is simplified (e.g., metadata bookkeeping)

• Replication for fault-tolerance and availability is facilitated

• Reduces clients’ need to interact with the master
• Reads and writes on the same chunk require only one initial request to the master for

chunk location information.

• Applications mostly read and write large files sequentially

• Client can reduce network overhead by keeping a persistent TCP connection
to the chunkserver over an extended period of time

• Reduces the size of the metadata stored on the master.
• This allows us to keep the metadata in memory

• Potential disadvantage: Chunkserver becomes hotspot with small file

12

Single master

• Advantage: simplified design
• Global knowledge of the system

• Problem:
• Single point of failure

• Scalability bottleneck

• GFS solutions:
• Shadow masters

• Minimize master involvement
• never move data through it, use only for metadata

• and cache metadata at clients

• large chunk size

• master delegates authority to primary replicas in data mutations (chunk leases)

13

Metadata

• Global metadata is stored on the master
• File and chunk namespaces
• Mapping from files to chunks
• Locations of each chunk’s replicas
• Access control information

• All in memory (64 bytes / chunk)
• Fast
• Easily accessible (fast scan, e.g., for balancing)

• Master has an operation log for persistent logging of critical
metadata updates
• Persistent on local disk
• Replicated
• Checkpoints for faster recovery

14

Master’s Responsibilities

• Metadata storage

• Namespace management/locking

• Periodic communication with chunkservers
• give instructions, collect state, track cluster health

• Chunks management
• Creation

• place new replicas on chunkservers with below-average disk space utilization
• limit “recent” creations on each chunkserver. It predicts imminent heavy write traffic
• spread replicas of a chunk across racks.

• Re-replication: number of available replicas falls below a user-specified goal.
• a chunkserver becomes unavailable, corrupted replica, disks is disabled because of

errors, replication goal is increased.

• Rebalancing
• examine the current replica distribution and move replicas for better disk space and load

balancing.

15

Master’s Responsibilities

• Garbage Collection
• simpler, more reliable than traditional file delete

• master logs the deletion, renames the file to a hidden name

• lazily garbage collects hidden files
• Periodically ask the chunkservers which blocks they have.

Those that cannot be referenced anymore can be removed.

• Stale replica deletion
• detect “stale” replicas using chunk version numbers

16

Mutations

• Mutation = write or record append
• Must be done for all replicas

• Goal: minimize master involvement

• Lease mechanism:
• Master picks one replica as primary; gives it a “lease” for mutations

• Data flow decoupled from control flow

17

Mutation is not
random access

Caches

• Data is not cached by clients (only metadata is)
• Access pattern: stream through huge files

• Working set too large to be cached

• System is highly simplified: no cache coherence problem!

• Chunkservers do cache data indirectly
• Chunks are stored as local files and so Linux’s buffer cache already keeps

frequently accessed data in memory

18

GFS - Overview

19

Read:

• The client sends the master the file name and chunk index.
• Using the fixed chunk size, the client translates the file name and byte offset

specified by the application into a chunk index within the file.

• The master replies with a chunk handle and locations of the replicas.
• The client caches this information.

20

• The client sends a request to one of the replicas,
• most likely the closest one.
• The request specifies the chunk handle and a byte range within that chunk.
• Further reads of the same chunk require no more client-master interaction

• The client typically asks for multiple chunks in the same request
• The master can also include the information for chunks immediately

following those requested.
• Sidesteps several future client-master interactions.

21

Write

• A primary replica holds a lease: coordinate writing on a chunk

• Separate data flow from control flow

22

Primary
Replica

Secondary
Replica

Secondary
Replica

Write

• The master grants a chunk lease to one of the replicas, which we call
the primary.
• The primary picks a serial order for all mutations to the chunk.

• All replicas follow this order when applying mutations.

• A lease has an initial timeout of 60 seconds.
• The primary can request and typically receive extensions

• HeartBeat messages regularly exchanged between master and chunkservers.

• If the master loses communication with a primary, it can safely grant a new
lease to another replica after the old lease expires.

23

Write

• The client asks the master which chunkserver holds the current lease for the
chunk and the locations of the other replicas.
• If no one has a lease, the master grants one to a replica it chooses

• The master replies with the identity of the primary and the locations of the
other (secondary) replicas.
• The client caches this data for future mutations.
• It needs to contact the master again only when the primary becomes unreachable

or replies that it no longer holds a lease

24

Primary
Replica

Secondary
Replica

Secondary
Replica

Write

• The client pushes the data to all the replicas.

• Each chunkserver will store the data in an internal LRU buffer.
• Decoupling the data flow from the control flow, improve performance by

scheduling the expensive data flow based on the network topology

• Once all the replicas have acknowledged receiving the data, the client
sends a write request to the primary.

25

Primary
Replica

Secondary
Replica

Secondary
Replica

Write

• Once all the replicas have acknowledged receiving the data, the client
sends a write request to the primary.
• The request identifies the data pushed earlier to all of the replicas.

• The primary assigns consecutive serial numbers to all the mutations it
receives, possibly from multiple clients, which provides serialization.

26

Primary
Replica

Secondary
Replica

Secondary
Replica

Write

• The primary forwards the write request to all secondary replicas.

• Each secondary replica applies mutations in the same serial number order
assigned by the primary.

• The secondaries all reply to the primary indicating that they have completed
the operation.

• The primary replies to the client.
• Any errors encountered at any of the replicas are reported to the client.

27

Primary
Replica

Secondary
Replica

Secondary
Replica

Write: Decouple data and control flow

• Control flows from client to the
primary and then to all secondaries

• Data is pushed linearly along a
carefully picked chain of chunkservers
in a pipelined fashion.
• Avoid network bottlenecks and high-latency links (e.g., inter-switch links):

each machine forwards data to the “closest” machine in the network.

• Once a chunkserver receives some data, it starts forwarding
immediately.
• Switched network with full-duplex links.

• Sending the data immediately does not reduce the receive rate.

28

Write: Decouple data and control flow

• Control flows from client to the
primary and then to all secondaries

• Data is pushed linearly along a
carefully picked chain of chunkservers
in a pipelined fashion.
• Avoid network bottlenecks and high-latency links (e.g., inter-switch links):

each machine forwards data to the “closest” machine in the network.

• Once a chunkserver receives some data, it starts forwarding
immediately.
• Switched network with full-duplex links.

• Sending the data immediately does not reduce the receive rate.

29

Write: Time estimation

• Ignore network congestion

• Transfer B bytes to R replicas

• T is the network throughput

• L is latency to transfer bytes between two machines.

• E.g., network links are typically 100 Mbps (T), and L is far below 1 ms.
Therefore, 1 MB can ideally be distributed in about 80 ms. (2003)

30

B/T + RL

References

• “Web Search for a Planet: The Google Cluster Architecture”, L.
Barroso, J. Dean, U. Hoelzle, IEEE Micro 23(2), 2003.

• “The Google File System”, S. Ghemawat, H. Gobioff, S. Leung, SOSP
2003.

• “The Hadoop Distributed File System”, K. Shvachko et al, MSST 2010.

• “Hadoop: The Definitive Guide”, T. White, O’Reilly, 3rd edition, 2012.

31

Questions?

32

Sources & References

General intro to bigdata

• http://www.systems.ethz.ch/sites/default/files/file/BigData_Fall2012/BigDat
a-2012-M5-1%20updated.pdf

Storage systems and big data

• www.cs.colostate.edu/~cs655/lectures/CS655-L4-StorageSystems.pdf

Specific on GFS

• https://courses.cs.washington.edu/courses/cse490h/08wi/lecture/lec6.ppt

Specific on GFS

• http://prof.ict.ac.cn/DComputing/uploads/2013/DC_4_0_GFS_ICT.pdf

33

