A Glimpse of the Hadoop
Echosystem

Hadoop Echosystem

* A cluster is shared among several users in an organization

e Different services

 HDFS and MapReduce provide the lower layers of the infrastructures

e Other systems “plug”
on top of these

 Easier way to program
applications

* MapReduce and HDFS
are “low level”

High-level Alternative
languages processing
Weave Summingbird
Predictive
Scalding analytucs ________ Spark
Cascalog RHadoop Storm
Crunch _SAlconiadoos Rhipe ElephantDB
Cascading Impala il ®R o
| HBASE
Pig € Hve i imemen

—
e

YARN + MapReduce

W G

RS - SN, I

HBase

* Hadoop database for random read/write access

* HBase is an open source, non-relational, distributed “database”
* modeled after Google's BigTable.

* It runs on top of Hadoop and HDFS, providing BigTable-like
capabilities for Hadoop.

* Eric Brewer’s CAP theorem, HBase is a CP type system.
* Consistency, availability, partition tolerance.

AR P A CHE

HBASE £2

When to use HBase

* Real big data: billions of rows X millions of columns
* Data can not store in a single node.

e Random read/write access
* Thousands of operations on big data

* No need of extra features of RDMS like typed columns, secondary
indexes, transactions, advanced query languages, etc.

Good for storing large file Built on top of HDFS. Good for hosting very large
tables like billions of rows X millions of column

Write once. Append to files in some of recent Read/write many
versions but not commonly used

No random read/write Random read/write

No individual record lookup rather read all data Fast records lookup(update)

HBase

* Type of NoSqgl database

* HBase is really more a "Data Store" than "Data Base”. It lacks many of the
features you find in an RDBMS, such as typed columns, secondary indexes,
triggers, and advanced query languages, ...

 Strongly consistent read and write

* Automatic sharding (i.e., “horizontal partitioning”)

* HBase tables are distributed on the cluster via regions, and regions are
automatically split and re-distributed as data grows

» Automatic RegionServer failover
* Hadoop/HDFS Integration

* Massively parallelized processing via MapReduce for using HBase as
both source and sink.

 Java API for programmatic access, REST for non-Java front-ends.

Gets all the data for the row
hbase> get '/user/user01/customer’, 'jsmith’

Limit this to only one column family
hbase> get '/user/user01/customer’, 'jsmith', {COLUMNS=>['addr']}

Limit this to a specific column
hbase> get '/user/user01/customer’, 'jsmith', {COLUMNS=>['order:numb']}

Scan all rows of table 't1'
hbase> scan 't1'

Specify a timerange
hbase> scan 'tl', {TIMERANGE => [1303668804, 1303668904]}

Specify a startrow, limit the result to 10 rows, and only return selected columns
hbase> scan 'tl', {COLUMNS => ['c1’, 'c2'], LIMIT => 10, STARTROW => 'xyz'}

Hive

“The Apache Hive ™ data warehouse software facilitates reading,
writing, and managing large datasets residing in distributed storage
using SQL. Structure can be projected onto data already in storage.
A command line tool and JDBC driver are provided

to connect users to Hive.”

Hive

* An SQL like interface to Hadoop.

* Data warehouse infrastructure built on top of Hadoop
* Provide data summarization, query and analysis

* Query execution via MapReduce

* Hive interpreter transparently converts queries to MapReduce.
* But other backends are also supported, e.g., Spark

* Open source, developed by Facebook
* Also used by Netflix, Cnet, Digg, eHarmony etc.

SELECT customerld, max(total_cost)
FROM hive_purchases

GROUP BY customerld

HAVING count(*) > 3;

1 DROP TABLE IF EXISTS docs;

2 CREATE TABLE docs (line STRING);

3 LOAD DATA INPATH 'input_file' OVERWRITE INTO TABLE docs;

4 CREATE TABLE word_counts AS 5 SELECT word, count(1) AS count FROM
6 (SELECT explode(split(line, '\s')) AS word FROM docs) temp

7 GROUP BY word

8 ORDER BY word;

* Wordcount in Hive
e Just a curiosity — probably not the typical kind of query

https://en.wikipedia.org/wiki/Apache_Hive

YARN

* Yet Another Resource Negotiator

* YARN Application Resource Negotiator(Recursive Acronym)

* Remedies the scalability shortcomings of “classic” MapReduce

* A general purpose framework. MapReduce is one application.

HADOOP 1.0 HADOOP 2.0
MapReduce Others
(data processing) (data processing)
MapReduce o -
(cluster resgurce management YARN
& data processing) (cluster resource management)

10

MapReduce Limitations

* Scalability
e Maximum Cluster Size — 4000 Nodes
* Maximum Concurrent Tasks — 40000
* Coarse synchronization in Job Tracker

* Single point of failure
* Failure kills all queued and running jobs
* Jobs need to be resubmitted by users

* Restart is tricky due to complex state

MapReduce Status ——————»
Job Submission ------ -

MapReduce Status ————

Job Submission ~------ =
Node Status ——-— g
Resource Request ---------- S

For a (short) introduction:

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

12

Splits up the major functions of JobTracker:
The ResourceManager has two components: Scheduler and ApplicationsManager.

Scheduler: performs no monitoring or tracking of status for the application.
* No guarantees about restarting failed tasks either due to application failure or hardware failures.
* Performs its scheduling function based on the resource requirements of the applications;
* Abstract notion of a resource Container (memory, cpu, disk, network etc.)

The ApplicationsManager is re5||oonsible for accepting job-submissions, negotiating the first
container for executing the application specific ApplicationMaster

* Provides the service for restarting the ApplicationMaster container on failure.

ApplicationMaster (one per application)
* Negotiate appropriate resource containers from the Scheduler
Tracks their status and monitoring for progress.
* Runs as a normal container.
Framework specific library
Works with the NodeManager(s) to execute and monitor the tasks.

NodeManager (NM)

* A new per-node slave is responsible for launching the
applications’ containers, monitoring their resource
usage (cpu, memory, disk, network?
and reporting to the
Resource Manager.

MapReduce Status ———

Job Submission ------ >

Node Status ————
Resource Request ---------- » DY
S ——

YARN

* Fault Tolerance and Availability

* Resource Manager
* No single point of failure — state saved in ZooKeeper
e Application Masters are restarted automatically

* Optional failover via application-specific checkpoint
e MapReduce applications pick up where they left off via state saved in HDFS

e Scalability
* 6000 - 10000 Nodes
* 100 000+ Concurrent Tasks
* 10 000+ Jobs

YARN

 Support for paradigms other than MapReduce (Multi tenancy)

* HBase on YARN (HOYA), Machine Learning: Spark, Graph processing: Giraph,
Real-time processing: Storm

* Enabled by allowing the use of paradigm-specific application master

* Run all on the same Hadoop cluster!

BATCH INTERACTIVE ONLINE STREAMING GRAPH IN-MEMORY HPC MPI (g:;i:)
(MapReduce) (Tez) (HBase) [J(Storm, S4,..)| (Giraph) (Spark) (OpenMPI) (Weave...)

YARN (Cluster Resource Management)
As HDFS2 (Redundant, Reliable Storage)

15

Sources

* Hadoop 2.0 and YARN - Subash D’Souza

* https://hortonworks.com/blog/apache-hadoop-yarn-background-
and-an-overview/

* https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

* http://hbase.apache.org/book.html#arch.overview

