
A	Glimpse	of	the	Hadoop	
Echosystem

1

Hadoop	Echosystem

• A	cluster	is	shared	among	several	users	in	an	organization
• Different	services

• HDFS	and	MapReduce	provide	the	lower	layers	of	the	infrastructures
• Other	systems	“plug”	
on	top	of	these
• Easier	way	to	program	
applications
• MapReduce	and	HDFS	
are	“low	level”

2

HBase

• Hadoop	database	for	random	read/write	access
• HBase is	an	open	source,	non-relational,	distributed	“database”

• modeled	after	Google's	BigTable.	
• It	runs	on	top	of	Hadoop	and	HDFS,	providing	BigTable-like	
capabilities	for	Hadoop.	
• Eric	Brewer’s	CAP	theorem,	HBase is	a	CP	type	system.

• Consistency,	availability,	partition	tolerance.

3

When	to	use	HBase

• Real	big	data:	billions	of	rows	X	millions	of	columns
• Data	can	not	store	in	a	single	node.

• Random	read/write	access
• Thousands	of	operations	on	big	data
• No	need	of	extra	features	of	RDMS	like	typed	columns,	secondary	
indexes,	transactions,	advanced	query	languages,	etc.

4

HDFS Hbase

Good for	storing	large	file Built on	top	of	HDFS.	Good	for	hosting	very	large	
tables	like	billions	of	rows	X	millions	of	column

Write	once.	Append to	files	in	some	of	recent	
versions	but	not	commonly	used

Read/write	many

No random	read/write Random	read/write

No	individual	record	lookup	rather	read	all	data Fast	records	lookup(update)

HBase

• Type	of	NoSql database
• HBase is	really	more	a	"Data	Store"	than	"Data	Base”.	It	lacks	many	of	the	
features	you	find	in	an	RDBMS,	such	as	typed	columns,	secondary	indexes,	
triggers,	and	advanced	query	languages,	…

• Strongly	consistent	read	and	write
• Automatic	sharding (i.e.,	“horizontal	partitioning”)
• HBase tables	are	distributed	on	the	cluster	via	regions,	and	regions	are	
automatically	split	and	re-distributed	as	data	grows

• Automatic	RegionServer failover
• Hadoop/HDFS	Integration
• Massively	parallelized	processing	via	MapReduce	for	using	HBase as	
both	source	and	sink.
• Java	API	for	programmatic	access,	REST	for	non-Java	front-ends.

5

6

#	Gets	all	the	data	for	the	row
hbase>	get	'/user/user01/customer',	'jsmith’

#	Limit	this	to	only	one	column	family
hbase>	get	'/user/user01/customer',	'jsmith',	{COLUMNS=>['addr']}

#	Limit	this	to	a	specific	column
hbase>	get	'/user/user01/customer',	'jsmith',	{COLUMNS=>['order:numb']}

#	Scan	all	rows	of	table	't1'	
hbase>	scan	't1'	

#	Specify	a	timerange
hbase>	scan	't1',	{TIMERANGE	=>	[1303668804,	1303668904]}

#	Specify	a	startrow,	limit	the	result	to	10	rows,	and	only	return	selected	columns	
hbase>	scan	't1',	{COLUMNS	=>	['c1',	'c2'],	LIMIT	=>	10,	STARTROW	=>	'xyz'}

Hive

“The	Apache	Hive	™	data	warehouse	software	facilitates	reading,	
writing,	and	managing	large	datasets	residing	in	distributed	storage	
using	SQL.	Structure	can	be	projected	onto	data	already	in	storage.	
A	command	line	tool	and	JDBC	driver	are	provided	
to	connect	users	to	Hive.”

7

Hive

• An	SQL	like	interface	to	Hadoop.
• Data	warehouse	infrastructure	built	on	top	of	Hadoop
• Provide	data	summarization,	query	and	analysis
• Query	execution	via	MapReduce
• Hive	interpreter	transparently	converts	queries	to	MapReduce.
• But	other	backends are	also	supported,	e.g.,	Spark

• Open	source,	developed	by	Facebook
• Also	used	by	Netflix,	Cnet,	Digg,	eHarmony	etc.

8

SELECT	customerId,	max(total_cost)	
FROM	hive_purchases
GROUP	BY	customerId
HAVING	count(*)	>	3;

• Wordcount in	Hive
• Just	a	curiosity	– probably	not	the	typical	kind	of	query	

https://en.wikipedia.org/wiki/Apache_Hive

9

1		DROP TABLE IF	EXISTS docs;	
2		CREATE TABLE docs	(line	STRING);	
3		LOAD DATA INPATH	'input_file'	OVERWRITE	INTO TABLE docs;	
4		CREATE TABLE word_counts AS 5	SELECT word,	count(1)	AS count FROM
6		(SELECT explode(split(line,	'\s'))	AS word	FROM docs)	temp	
7		GROUP BY word	
8		ORDER BY word;

YARN

• Yet	Another	Resource	Negotiator
• YARN	Application	Resource	Negotiator(Recursive	Acronym)
• Remedies	the	scalability	shortcomings	of	“classic”	MapReduce
• A general	purpose	framework.	MapReduce	is	one	application.

10

MapReduce	Limitations

• Scalability
• Maximum	Cluster	Size	– 4000	Nodes
• Maximum	Concurrent	Tasks	– 40000
• Coarse	synchronization	in	Job	Tracker

• Single	point	of	failure
• Failure	kills	all	queued	and	running	jobs
• Jobs	need	to	be	resubmitted	by	users
• Restart	is	tricky	due	to	complex	state

11

12

For	a	(short)	introduction:
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

• Splits	up	the	major	functions	of	JobTracker:
• The	ResourceManager has	two	components:	Scheduler	and	ApplicationsManager.
• Scheduler:	performs	no	monitoring	or	tracking	of	status	for	the	application.	

• No	guarantees	about	restarting	failed	tasks	either	due	to	application	failure	or	hardware	failures.	
• Performs	its	scheduling	function	based	on	the	resource	requirements	of	the	applications;	
• Abstract	notion	of	a	resource Container (memory,	cpu,	disk,	network	etc.)

• The	ApplicationsManager is	responsible	for	accepting	job-submissions,	negotiating	the	first	
container	for	executing	the	application	specific	ApplicationMaster
• Provides	the	service	for	restarting	the	ApplicationMaster container	on	failure.	

• ApplicationMaster (one	per	application)
• Negotiate	appropriate	resource	containers	from	the	Scheduler	
• Tracks	their	status	and	monitoring	for	progress.	
• Runs	as	a	normal	container.
• Framework	specific	library
• Works	with	the	NodeManager(s)	to	execute	and	monitor	the	tasks.

• NodeManager (NM)
• A	new	per-node	slave	is	responsible	for	launching	the	
applications’	containers,	monitoring	their	resource	
usage	(cpu,	memory,	disk,	network)	
and	reporting	to	the	
Resource	Manager.

13

YARN

• Fault	Tolerance	and	Availability
• Resource	Manager	

• No	single	point	of	failure	– state	saved	in	ZooKeeper
• Application	Masters	are	restarted	automatically

• Optional	failover	via	application-specific	checkpoint
• MapReduce	applications	pick	up	where	they	left	off	via	state	saved	in	HDFS

• Scalability
• 6000	- 10000	Nodes
• 100	000+	Concurrent	Tasks
• 10	000+	Jobs

14

YARN

• Support	for	paradigms	other	than	MapReduce	(Multi	tenancy)
• HBase on	YARN	(HOYA),	Machine	Learning:	Spark,	Graph	processing:	Giraph,	
Real-time	processing:	Storm

• Enabled	by	allowing	the	use	of	paradigm-specific	application	master
• Run	all	on	the	same	Hadoop	cluster!

15

Sources

• Hadoop	2.0	and	YARN	- Subash D’Souza
• https://hortonworks.com/blog/apache-hadoop-yarn-background-
and-an-overview/
• https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html
• http://hbase.apache.org/book.html#arch.overview

16

