Advanced Big Data Systems

Guido Salvaneschi

Different data processing goals

* Low latency (interactive) queries on historical data: enable faster
decisions
* E.g., identify why a site is slow and fix it

* Low latency queries on live data (streaming): enable decisions on
real-time data

* E.g., detect & block worms in real-time (a worm may infect 1mil hosts in
1.3sec)

* Sophisticated data processing: enable “better” decisions
* E.g., anomaly detection, trend analysis

Goals

(Batch
One
| — stack to
£ f\'— rule them
| Interactiv | {—2*—)
e

4 A WY
{ wy, LS ‘4’.‘“5 1

Streamin J

9

= Easy to combine batch, streaming, and interactive computations

= Easy to develop sophisticated algorithms

= Compatible with existing open source ecosystem (Hadoop/HDFS)

Memory use

* Aggressive use of memory can be a solution

 Memory transfer rates >> disk or even SSDs

* Gap is growing especially w.r.t. disk

* Many datasets already fit into memory
* The inputs of over 90% of jobs in Facebook,

128-512GR

Yahoo!, and Bing clusters fit into memory 40-60GB/s
* E.g., 1TB =1 billion records @ 1 KB each 1-
* Memory density (still) grows (x4 disks)

with Moore’s law 0.2-

* RAM/SSD hybrid memories at horizon 1GB/S
(x10 disks)

High end datacenter node

Spark

* Project start - UC Berkeley, 2009

* Matei Zaharia et al. Spark: Cluster
Computing with Working Sets,.
HotCloud 2010.

* Matei Zaharia et al. Resilient
Distributed Datasets: A Fault-
Tolerant Abstraction for In-Memory
Cluster Computing. NSDI 2012.

* In February 2014, Spark became
a Top-Level Apache Project

* Open source (mostly Scala code)

* http://spark.apache.org/

{1 Apache Spark - Lightnin

C spark.incubator.apache.org

Spar

Lightning-Fast Cluster Computing

Home Downloads Documentation Examples

What is Apache Spark?

Apache Spark is an open source cluster computing system that aims to
make data analytics fast — both fast to run and fast to write.

To run programs faster, Spark offers a general execution model that can
optimize arbitrary operator graphs, and supports in-memory computing,
which lets it query data faster than disk-based engines like Hadoop.

To make programming faster, Spark provides clean, concise APIs in Scala,
Java and Py n. You can also use Spark interactively from the Scala and
Python shells to rapidly query big datasets.

What can it do?

Spark was initially developed for two applications where placing data in
memory helps: iterative algorithms, which are common in machine
learning, and interactive data mining. In both cases, Spark can run up to
100x faster than Hadoop MapReduce. However, you can use Spark for
general data processing too. Check out our example jobs.

Spark is also the engine behind Shark, a fully Apache Hive-compatible
data warehousing system that can run 100x faster than Hive.

While Spark is a new engine, it can access any data source supported by
Hadoop, making it easy to run over existing data.
Who uses it?

Spark was initially created in the UC Berkeley AMPLab, but is now being
used and developed at a wide array of companies. See our powered by

Mailing Lists Rese:

Sign up now!
Dec 2-3, 2013
San Francisco

FAQ

ATEST NEWS

Announcing the first Spark Summit
December 2, 2013 (October 08, 2013)

Spark 0.8.0 released (September 25, 2013)

Spark user survey and "Powered By" page
(September 05, 2013)

Fourth Spark screencast released (August
27, 2013)

News Archive

file = spark.textFile("hdfs://...")

file.f

.reduceByKey(_ + _)

Word Count implemented in Spark

% Hadoop = Spark
~4000
<
> 3000
i 2000

Ll B W

m

i

http://spark.apache.org/

Pros and Cons of MapReduce

Greatly simplifies “big data” analysis on large, unreliable clusters

» Simple interface: map and reduce
» Hides details of parallelism, data partition, fault-tolerance, load-balancing...

* Problems
e cannot support complex (iterative) applications efficiently
e cannot support interactive applications efficiently

* Root cause
* Inefficient data sharing

* Hardware had advanced since Hadoop started.
* Very large RAMs, Faster networks (10Gb+). === =—==—-==—==—====—=+—

: : : I In MapReduce, the only wa
* Bandwidth to disk not keeping up o shaFr)e data across JOIZS < y '
|

| stable storage -> slow!

Limitations of MapReduce

HDFS HDFS HDFS HDFS
i read write i read write i

Input

result1

result 2

result 3

Slow due to replication and disk /O,
but necessary for fault tolerance

Goal: In-Memory Data Sharing

one-time
processing

Challenges

10-100x faster than network/disk, but how to achieve fault-tolerance ?
efficiently? ®

e Data replication?
® Log fine-grained updates to mutable states?

e Network bandwidth is scarce resource
Disk 1/0O is slow
® Costly for data-intensive apps

Observation

/

o

Coarse-grained operation:
In many distributed computing, same operation is applied to
multiple data items in parallel

~

)

10

RDD (Resilient Distributed Datasets)

* Restricted form of distributed shared memory

immutable, partitioned collection of records

can only be built through coarse-grained deterministic transformations
(map, filter, join...)

 Efficient fault-tolerance using lineage

Log coarse-grained operations instead of fine-grained data updates

An RDD has enough information about how it’s derived from other
dataset

Recompute lost partitions on failure

Fault-tolerance

one-time
processing

12

Spark and RDDs

* Implements Resilient Distributed Datasets (RDDs)

* Operations on RDDs
* Transformations: defines new dataset based on previous ones
e Actions: starts a job to execute on cluster

* Well-designed interface to represent RDDs
 Makes it very easy to

implement transformations Operation Meaning
. partitions() Return a list of Partition objects
i M Ost S p ar k tra n Sfo rm at on preferredLocations(p) | List nodes where partition p can be
. . accessed faster due to data locality
Im p I e m e ntat I 0 n < 20 LOC dependencies() Return a list of dependencies

iterator(p, parentiters) | Compute the elements of partition p
given iterators for its parent partitions

partitioner() Return metadata specifying whether
the RDD is hash/range partitioned

Table 3: Interface used to represent RDDs in Spark.

13

Simple Yet Powerful

WordCount Implementation: Hadoop vs. Spark

WordCount {

textFile = sc.textFile("hdfs: 2"
counts xtFile.flatMap(line line.split("
counts.saveAsTextFile("hdf

)).map(word => (word, 1)).reduceByKey(_

~_hasMoreTokens())
word. set(itr.nextToken());

int sum
(IntWritable val - values) {
sum val get();

result.set(sum);
context.write(key, result);

Pregel: iterative graph processing,
200 LoC using Spark

setReducerClass(Ints
tOutputKeyClass (T«
setOutputValueClass(Intiir class);
t.addInputPath(job, Path(args[0]));
t_setOutputPath(job, (args[11));

e e Golen (i) 18 s Haloop: iterative MapReduce,
200 LoC using Spark

14

Spark

* Fast, expressive cluster computing system compatible with
Apache Hadoop
» Works with any Hadoop-supported storage system (HDFS, S3, Avro, ...)

* Improves efficiency through:
* In-memory computing primitives
* General computation graphs

* Improves usability through:

* Rich APIs in Java, Scala, Python
* Interactive shell

More on RDDs

Work with distributed collections as you would with local ones

 Resilient distributed datasets (RDDs)
* Immutable collections of objects spread across a cluster
* Built through parallel transformations (map, filter, etc)
* Automatically rebuilt on failure

» Controllable persistence (e.g., caching in RAM)
» Different storage levels available, fallback to disk possible

* Operations
* Transformations (e.g. map, filter, groupBy, join)
* Lazy operations to build RDDs from other RDDs

* Actions (e.g. count, collect, save)
* Return a result or write it to storage

Workflow with RDDs

* Create an RDD from a data source: <list> 8
* Apply transformations to an RDD: map filter
* Apply actions to an RDD: collect count

<l|ist> —>[D | filtered RDD J > mapped RDD]JJ

parallelize filter map

collect

N

collect action causes parallelize, filter,
and map transforms to be executed

Result

distFile = sc.textFile("...", 4)
* RDD distributed in 4 partitions
* Elements are lines of input
* Lazy evaluation means no execution happens now

Example: Mining Console Logs

* Load error messages from a log into memory, then interactively search for patterns

Base RDD

Transformed RDD

lines = spark.textFile(“hdfs://...”)
errors = lines.filter(lambda s: s.startswith(“ERROR™))
messages = errors.map(lambda s: s.split(“\t’)[2])

messages.cache() Cache 1

messages.filter(lambda s: “foo” in s).count()

messages.filter(lambda s: “bar” in s).count()

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Result: full-text search of Wikipedia in <1 sec
(vs 20 sec for on-disk data)

Partitions

* Programmer specifies number of partitions for an RDD
» Default value used if unspecified
* more partitions = more parallelism (If workers are available)

r"ﬂ"'T"'T'_'F__W

I tem-1 @ item-6 @ item-l1 item-16 - item-2I 1

L item2 | item7 | item-i2 | item-17 | item-22.1
item-3 - item-8 - item-13 - item-18 : item-23 I -

: item-4 | item9 | item-14 | item-19 | item-24 | RDD Spllt Into
item-5 © item-10 0 item-15 : item-20 : item-25 | ene

e Gt b 5 partitions

1 : X

Worker

Spark
executor

Worker

Worker
Spark
executor

Spark
executor

19

RDD partition-level view

Dataset-level view:

log:

errors:

Partition-level view:

[

—

Task 1 Task 2 ...

Job scheduling

RDD Objects

\/
v

”

rddl.join(rdd2)
.groupBy(...)
filter(..)

build operator DAG

DAG

DAGScheduler

Cluster Threads
8| TaskSet manager — Task
— > - Block

split graph into
stages of tasks
submit each

stage as ready

TaskScheduler Worker

m—-

Mmanhager
launch tasks via execute tasks
cluster manager
retry failed or store and serve
straggling tasks blocks

source: https://cwiki.apache.org/confluence/display/SPARK/Spark+Internals

RDD Fault Tolerance

RDDs track the transformations used to build them (their lineage) to
recompute lost data

E'g: messages = textFile(...).filter(lambda s: s.contains(“ERROR™))
.map(lambda s: s.split(“\t’)[2])

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func = contains(...) func = split(...)

Fault Recovery Test

140
119
?120
o 100 Failure happens
£ 81
= 80 \
c 57 58 58 59 59
S &0 56 57 57
E S
=y
© 40
3
= 20
0
1 2 3 4 5 6 7 8 9 10

Iteration

running time for 10 iterations of k-means on 75 nodes, each iteration contains
400 tasks on 100GB data

Behavior with Less RAM

u o N
© © o
69
58

Iteration time (s)
w b
o O

N
o
|

12

=
o
|

o
|

Cache disabled 25% 50% 75% Fully cached
% of working set in cache

Spark in Java and Scala

Java API:

JavaRDD<String> lines = spark.textFile(..);

errors = lines.filter(
new Function<String, Boolean>() {
public Boolean call(String s) {
return s.contains(“ERROR”);
}

1)

errors.count()

Scala API:

val lines = spark.textFile(..)

errors = lines.filter(s => s.contains(“ERROR™))
// can also write filter(_.contains(“ERROR”))

errors.count

Creating RDDs

Turn a local collection into an RDD
sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)

sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)

Use any existing Hadoop InputFormat
sc.hadoopFile(keyClass, valClass, inputFmt, conf)

Basic Transformations

nums = sc.parallelize([1, 2, 3])

Pass each element through a function
squares = nums.map(lambda x: x*x) # => {1, 4, 9}

Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) # => {4}

Map each element to zero or more others
nums.flatMap(lambda x: range(@, x)) # => {0, 0, 1, O,
1, 2}

Range object (sequence of

numbers 0O, 1, ..., x-1)

Basic Actions

nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect() # => [1, 2, 3]

Return first K elements
nums.take(2) # => [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: x +y) # =>6

Write elements to a text file
nums.saveAsTextFile(“hdfs://file.txt”)

Working with Key-Value Pairs

» Spark’s “distributed reduce” transformations act on RDDs of key-
value pairs

* Python: pair = (a, b)

 Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // =>b

* Java: Tuple2 pair = new Tuple2(a, b); // class scala.Tuple2
pair. 1 // => a
pair. 2 // => b

Some Key-Value Operations

pets = sc.parallelize([(“cat”, 1), (“dog”, 1), (“cat”, 2)])

pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

pets.groupByKey ()
=> {(Cat: SEQ(l, 2)): (dog: Seq(l)}

pets.sortByKey()
=> {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey also automatically implements combiners on the map side

Example: Word Count

val lines = sc.textFile(“hamlet.txt”)

val counts = lines.flatMap(.split(® *)) [Scala]
.map((_, 1))
.reduceByKey(x + y)
utou (to, 1) (be 2)
‘tobeor’ ~ ———pp ‘D" =P (be,1) (not, 1)
“Or” (Or’ 1) ,
“not” (not, 1) (or, 1)
“not to be” — “t0” —P (to, 1) (to, %)
“be” (be, 1) '

lines = sc.textFile(“hamlet.txt”)

counts = lines.flatMap(lambda line: line.split(“ *)) \
.map(lambda word: (word, 1)) \ [Python]
.reduceByKey(lambda x, y: x + y)

Multiple Datasets

sc.parallelize([(“index.html”, “1.2.3.4”),
(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”)])

visits

pageNames = sc.parallelize([(“index.html”, “Home”), (“about.html”, “About”)])

visits.join(pageNames)

(“index.html”, (“1.2.3.4”, “Home”))

(“index.html”, (“1.3.3.1”, “Home”))

(“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
(“index.html”, (Seq(“1.2.3.4”, “1.3.3.1”), Seq(“Home”)))
(“about.html”, (Seq(“3.4.5.6”), Seq(“About”)))

Controlling the Level of Parallelism

* All the pair RDD operations take an optional second parameter
for the number of tasks

words.reduceByKey(lambda x, y: x + vy, 5)
words.groupByKey(5)
visits.join(pageViews, 5)

Using Local Variables

* External variables you use in a closure will automatically be shipped
to the cluster:

query = raw_input(“Enter a query:”)
pages.filter(lambda x: x.startswith(query)).count()

* Some caveats:
* Each task gets a new copy (updates aren’t sent back)
* Variable must be Serializable (Java/Scala) or Pickle-able (Python)
* Don’t use fields of an outer object (ships all of it!)

Closure Mishap Example

class MyCoolRddApp { How to get around it:
val param = 3.14
val log = new Log(...) class MyCoolRddApp {
def work(rdd: RDD[Int]) { def work(rdd: RDD[Int]) {
rdd.map(x => x + param) val param_ = param
.reduce(...) rdd.map(x => x + param_)

.reduce(...)

NotSerializableException: }
MyCoolRddApp (or Log)

References only local variable
instead of this.param

Software Components

* Spark runs as a library in your program Your application
(one instance per app) SparkContext

* Runs tasks locally or on a cluster
» Standalone deploy cluster, Mesos or YARN Cluster

* Accesses storage via Hadoop InputFormat API
* Can use HBase, HDFS, S3, ... Worker Worker

Spark Spark
executor executor

* A Spark program is two programs:
A driver program and a workers program HDFS or other storage

* Worker programs run on cluster nodes or
in local threads

 RDDs are distributed across workers

Task Scheduler

» Supports general task graphs

* Pipelines functions where
possible

* Cache-aware data reuse &
locality

* Partitioning-aware to avoid
shuffles

g EEm S S S S S e B e B e Sy

@ = RDD (@ = cached partition

- o o o o o o e o = = P

Hadoop Compatibility

 Spark can read/write to any storage system/format that has a plugin
for Hadoop!
* Examples: HDFS, S3, HBase, Cassandra, Avro, SequenceFile
e Reuses Hadoop’s InputFormat and OutputFormat APIs

* APIs like sparkContext.textFile support filesystems, while
SparkContext . hadoopRDD allows passing any Hadoop JobConf to
configure an input source

Complete App: Scala

import spark.SparkContext
import spark.SparkContext.

object WordCount {
def main(args: Array[String]) {

val sc = new SparkContext(“local”, “WordCount”, args(@), Seq(args(1l)))

val lines = sc.textFile(args(2))

lines.flatMap(_.split(“ *))
.map(word => (word, 1))
.reduceByKey(_ +)
.saveAsTextFile(args(3))

Complete App: Python

import sys
from pyspark import SparkContext

if _name__ == "_main__ ":
sc = SparkContext(“local”, “WordCount”, sys.argv[©], None)
lines = sc.textFile(sys.argv[1l])

lines.flatMap(lambda s: s.split(“ 7)) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + y) \
.saveAsTextFile(sys.argv[2])

Page Rank

* Give pages ranks (scores) based on links to them

* Links from many pages = high rank
* Link from a high-rank page =2 high rank

* Good example of a more complex algorithm
* Multiple stages of map & reduce

* Benefits from Spark’s in-memory caching
* Multiple iterations over the same data

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Page Rank

PR(t)

PR(X)=(1-d)+ dz)

 Sketch of algorithm:
e Start with seed PRi values
* Each page distributes PRi “credit” to all pages it links to

e Each target page adds up “credit” from multiple in-bound links to
compute PRi+1

* [terate until values converge

Algorithm

1. Start each page at arankof 1

2. On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

3. Set each page’srankto 0.15+ 0.85 X contribs

1.0 7\3
1.0 1.0

1.0

Algorithm

1. Start each page at arankof 1
2. On each iteration, have page p contribute

rank, / [neighbors | to its neighbors
Set each page’s rank to 0.15 + 0.85 X contribs

1.0

1.0

0.5

1.0

0.5

0.5

0.5

j 10

Algorithm

1. Start each page at arankof 1

2. On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

3. Set each page’srankto 0.15+ 0.85 X contribs

1.85
?\
0.58 1.0

0.58

Algorithm

1. Start each page at arankof 1

2. On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

0.58

1.85

0.58

0.29

0.58

0.29

1.85

0.5

0.5

Set each page’s rank to 0.15 + 0.85 X contribs

j 10

Algorithm

1. Start each page at arankof 1

2. On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

3. Set each page’srankto 0.15+ 0.85 X contribs

0.58

Algorithm

1. Start each page at arankof 1

2. On each iteration, have page p contribute
rank, / [neighbors | to its neighbors

3. Set each page’srankto 0.15+ 0.85 X contribs

Final state: 1.44 7\
0.46 1.37

0.73

Page Rank: MapReduce (Just an intuition)

One PageRank iteration:

* Input:
(id,, [score,¥, out,,, out,,, ..]), (id,, [score,V, out,,, out,,, ..]) ..

* Qutput:
(id,, [score, V), out,,, out,,, ..]), (id,, [score,*), out,,, out,,, ..]) ..

| Input format |
I must match the :
output format |

Pseudocode

fun map(key: url, value: [pagerank, outlink_list])
foreach outlink in outlink_list
emit(key: outlink, value: pagerank/size(outlink_list))

emit(key: url, value: outlink_list)

fun reduce(key: url, value: list_pr_or_urls)
outlink_list =]
pagerank =0
foreach pr_or_urlsin list_pr_or_urls
if is_list(pr_or_urls)
outlink_list = pr_or_urls
else
pagerank += pr_or_urls
pagerank = 0.15 + (0.85 * pagerank)

emit(key: url, value: [pagerank, outlink_list])

(1) Each page
distributes PRi “credit”
to all pages it links to

(2) Each target page
adds up “credit” from
multiple in-bound links

The result of each iteration is persisted!

Input

HDFS HDFS HDFS HDFS
‘ i read write i read write i

result 1

result 2

result 3

Slow due to replication and disk I/O,
but necessary for fault tolerance

51

Scala Implementation ()

val links
var ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatMap {
case (url, (neighbors, rank)) =>
neighbors.map(dest => (dest, rank/neighbors.size))
}

ranks = contribs.reduceByKey(_ +) // Sum all links pointing to each url
.mapValues(0.15 + 0.85 *)

}

// Intermediate values

scala> contributions.collect

Scala> Array[(String, Double)] =
Array((MapR,1.0), (Baidu,0.5), (Blogger,0.5),
(Google,0.5), (Baidu,0.5), (MapR,1.0))

ranks.saveAsTextFile(...)

// A possible initialization

val links = sc.parallelize(List(("MapR",List("Baidu","Blogger")), ("Baidu",
List("MapR")), ("Blogger",List("Google","Baidu")), ("Google", List("MapR"))))
.partitionBy(new HashPartitioner(4)).persist()

var ranks = links.mapValues(v => 1.0)

Python Implementation

RDD of (url, neighbors) pairs
RDD of (url, rank) pairs

links
ranks

for i in range(NUM_ITERATIONS):
def compute contribs(pair):
[url, [links, rank]] = pair # split key-value pair
return [(dest, rank/len(links)) for dest in links]

contribs = links.join(ranks).flatMap(compute contribs)
ranks = contribs.reduceByKey(lambda x, y: x + y) \
.mapValues(lambda x: ©.15 + 0.85 * Xx)

ranks.saveAsTextFile(...)

PageRank Performance

Iteration time (s)

200
180
160
140
120
100
80
60
40
20

=171

Hadoop
Spark

80

= 23
H 14

30 60

Number of machines

Other Iterative Algorithms

K-Means 155
Clustering | 4,1

0 30 60 90 120 150 180

= Hadoop

m Spark

Logistic 110

Regression | 0,96

0 25 50 75 100 125

Time per Iteration (s)

Spark ecosystem

Spark MLIib
treamingl} (machine
learning

Apache Spark

{1 Apache Spark - Lightning %

« € [spark.incubator.apache.org

Spark

Lightning-Fast Cluster Computing

Home Downloads Documentation Examples

What is Apache Spark?

Apache Spark is an open source cluster computing system that aims to
make data analytics fast — both fast to run and fast to write.

To run programs faster, Spark offers a general execution model that can
optimize arbitrary operator graphs, and supports in-memory computing,
which lets it query data faster than disk-based engines like Hadoop,

To make programming faster, Spark provides clean, concise APIs in Scala,
Java and Python. You can also use Spark interactively from the Scala and
Python shells to rapidly query big datasets.

What can it do?

Spark was initially developed for two applications where placing data in
memory helps: iterative aigorithms, which are common in machine
learning, and interactive data mining. In both cases, Spark can run up to
100x faster than Hadoop MapReduce. However, you can use Spark for
general data processing too. Check out our example jobs.

Spark is also the engine behind Shark, a fully Apache Hive-compatible
data warehousing system that can run 100x faster than Hive.

While Spark is a new engine, it can access any data source supported by
Hadoop, making It easy to run over existing data.

Who uses it?

Spark was initially created in the UC Berkeley AMPLab, but is now being
used and developed at a wide array of companies. See our powered by

Malling Lists Research

LATEST NEWS

Sign up now!
Dec 2-3, 2013

FAQ

Announcing the first Spark Summit
December 2, 2013 (October 08, 2013)

Spark 0.8.0 released (September 25, 2013)

Spark user survey and "Powered By" page

(September 05, 2013)

Fourth Spark screencast released (August

27, 2013)

News Archive

file = spark.textFile("hdfs://...")

file.flatMapCline => line.split(" "))
word, 1))

-mapQword => ()
reduceByKey(_ +)

Word Count implemented in Spark

“Hadoop ®Spark

56

Sources & References

On the problem with the stack of big data analytics

* http://ampcamp.berkeley.edu/wp-content/uploads/2013/02/Berkeley-Data-
Analytics-Stack-BDAS-Overview-lon-Stoica-Strata-2013.pdf

RDDs

* web.eecs.umich.edu/~mosharaf/Slides/EECS582/W16/030916-Qj-
Spark.pptx

Spark

* http://ampcamp.berkeley.edu/wp-content/uploads/2013/02/Parallel-
Programming-With-Spark-Matei-Zaharia-Strata-2013.pdf

Extra: shark

* http://ampcamp.berkeley.edu/wp-content/uploads/2013/02/Shark-SQL-
and-Rich-Analytics-at-Scala-Reynold-Xin.pdf

