Spark Streaming

Guido Salvaneschi

Spark Streaming

* Framework for large scale stream processing

Scales to 100s of nodes

Can achieve second scale latencies

Integrates with Spark’s batch and interactive processing

Provides a simple batch-like APl for implementing complex algorithm
Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

KA .
SparK' streaming

.S‘por“?i:‘;w]

batches results

data streams

receivers

Motivation

* Many important applications must process large streams of live data
and provide results in near-real-time
 Social network trends
* Website statistics
* Intrustion detection systems

. etc - '
. Worldwide TrenC gyeryiew o seres [iosioy | astwoss | iasio | At

#followmemegatro
#ThingsGirlsLike
lyikiDogdun Recef

Q Home @ Connect # Discover
- .

#teentopno1showt
#NigerianBloggers
#HocaliSoykinmini
FC Twente
Toni Canté

* Scalable to large clusters

sssss

» Second-scale latencies
* Simple programming model

Example: Monitoring

Real-time monitoring of online video metadata

Two processing stacks:

e Custom-built distributed stream processing system
* 1000s complex metrics on millions of video sessions
* Requires many dozens of nodes for processing

* Hadoop backend for offline analysis
* Generating daily and monthly reports
e Similar computation as the streaming system

Integrated batch & interactive processing ?

Two stacks

* Existing frameworks cannot do both
* Either, stream processing of 100s of MB/s with low latency
 Or, batch processing of TBs of data with high latency

* Extremely painful to maintain two different stacks
* Different programming models
* Doubles implementation effort
* Doubles operational effort

Fault-tolerant Stream Processing

* Traditional processing model
* Pipeline (graph) of nodes
* Each node maintains mutable state input

e Each input record updates the state PERIids

and new records are sent out
input
records
 Mutable state is lost if node fails

* Making stateful stream processing
fault-tolerant is challenging!

mutable state

node 1

EEs
—

node 2

node 3

Existing streaming systems

e Storm

Replays record if not processed by a node @

Processes each record at least once

May update mutable state twice! STO R M
Mutable state can be lost due to failure!

* Trident
* high-level abstraction for doing realtime computing on top of Storm
e Use transactions to update state
* Processes each record exactly once
* Per-state transaction to external database is slow

Spark streamaing

* Receive data streams from input sources
* Process them in a cluster
* Push out to databases/ dashboards

» Scalable, fault-tolerant, second-scale latencies

Spor‘l’g
Streaming

Microbatching

* Run a streaming computation as a series of very small,
deterministic batch jobs
* Chop up data streams into batches of few secs

 Batch sizes as low as % second, latency ~ 1 second

» Spark treats each batch of data as RDDs
and processes them using RDD operations

* Processed results are pushed out

in batches live data stream Spark

[l L))
L‘i'\ /‘ Stre:nmg

batches ofﬁX seconds —

@ wm wm wm | Spark
processed results

Spark Streaming Programming model

 Discretized Stream (DStream)
* Represents a stream of data
* Implemented as a sequence of RDDs

e DStreams API very similar to RDD API
* Functional APIs in Scala, Java
* Create input DStreams from different sources
* Apply parallel operations

Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

Twitter Streaming AP| ESEcH@IEN MEsEh@E Nhh@wzl W)

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

new DStream transformation: modify data in one Dstream to create another DStream

Cbach@t bach@tl bach@t2

tweets DStream

new RDDs created for
every batch

hashTags Dstream
[#cat, #dog, ...]

Example 1 — Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

batch @ t batch @ t+1 batch @ t+2
tweets DStream

latMap latMap flatMap

hashTags DStream

every batch saved
to HDFS

Java Example

Scala

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> = ssc.twitterStream(<Twitter username>, <Twitter
password>)

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

.saveAsHadoopFiles("hdfs://...")
Function object to define the transformation

Fault-tolerance

= RDDs are remember the sequence of
operations that created it from the
original fault-tolerant input data

= Batches of input data are replicated in
memory of multiple worker nodes,
therefore fault-tolerant

= Data lost due to worker failure, can be
recomputed from input data

tweets
RDD

hashTags
RDD

flatMap

input data
replicated
in memory

lost partitions
recomputed on
other workers

Key concepts

e DStream — sequence of RDDs representing a stream of data
* Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

* Transformations — modify data from on DStream to another
» Standard RDD operations — map, countByValue, reduce, join, ...
 Stateful operations — window, countByValueAndWindow, ...

e Output Operations — send data to external entity
* saveAsHadoopFiles — saves to HDFS
e foreach — do anything with each batch of results

Example 2 — Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()

batch @ t batch @ t+1 batch @ t+2
tweets
flatMap flatMap flatMap
hashTags
map map map

rrii,

rrii rrii o
tagcounts reduceByKey I”EduceByKey reduceByKey
[(#cat, 10), (#dog, 25), ...] & & &

Example 3:
Count the hashtags over last 10 mins

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window

. window length sliding interval
operation

Example 3:
Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

t-1 t+2 t+3

hashTags

countByValue

count over all
the data in the
window

tagCounts

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

t-1 t t+1 t+3

t+2
hashTags T ? ?
alcountBvVaale ol (\ V)

T

add the counts
from the new
batch in the
window

[

~

——

subtract the

L (counts from
tagCounts | | 1 batch before
the window

Smart window-based reduce

* Technique to incrementally compute count generalizes to many reduce operations
* Need a function to “inverse reduce” (“subtract” for counting)

e Could have implemented counting as:

hashTags.reduceByKeyAndWindow(_ + _, - _, Minutes(1), ..)

Fault-tolerant Stateful Processing

All intermediate data are RDDs, hence can be recomputed if lost

t-1 t+1 t+2 t+3

t
hashTags i i i

tagCounts

Fault-tolerant Stateful Processing

= State data not lost even if a worker node dies
* Does not change the value of your result

= Exactly once semantics to all transformations
* No double counting!

Other Interesting Operations

» Maintaining arbitrary state, track sessions
* Maintain per-user mood as state, and update it with his/her tweets

tweets.updateStateByKey(tweet => updateMood(tweet))

= Do arbitrary Spark RDD computation within DStream
* Join incoming tweets with a spam file to filter out bad tweets
tweets.transform(tweetsRDD => {
tweetsRDD. (spamHDFSFile).filter(...)

1)

Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second
latency

* Tested with 100 streams of data on 100 EC2 instances with 4 cores each

Cluster Thhroughput (GB/s)

O = N W b~ U1 OO

a1 sec

o= sec

T

50
Nodes in Cluster

100

Cluster Throughput (GB/s)

3,5

5 WordCount
2,5

2
1,5

] o

1 sec

0,5 A

0 a2 sec

0 50 100

Nodes in Cluster

25

Vision - one stack to rule them all

Stream Ad-hoc
Processing Spark Queries
+
Shark
+
Spark
Streaming

Batch
Processing

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))
("hdfs://...")

Spark program on Twitter log file
val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))
("hdfs://...")

Vision - one stack to rule them all

= Explore data interactively using Spark
Shell / PySpark to identify problems

= Use same code in Spark stand-alone
programs to identify problems in
production logs

= Use similar code in Spark Streaming to
identify problems in live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smalllLogs”)

scala> val filtered = file.filter(_.contains(“ERROR”))

object ProcessProductionData {
def main(args: Array[String]) {
val sc = new SparkContext(...)
val file = sc.hadoopFile(“productionLogs™)
val filtered = file.filter(_.contains(“ERROR”))
val mapped = file.map(...)

P 7)

object ProcessLiveStream {
def main(args: Array[String]) {
o val sc = new StreamingContext(...)
val stream = sc.kafkaStream(...)
val filtered = file.filter(_.contains(“ERROR™))
val mapped = file.map(...)

-

Questions?

Sources & References

Lecture mostly mased on:
e http://ampcamp.berkeley.edu/wp-content/uploads/2013/02/large-

scale-near-real-time-stream-processing-tathagata-das-strata-
2013.pdf

Thoughts on realtime analytics:
* https://iwringer.wordpress.com/tag/bigdata/

30

http://ampcamp.berkeley.edu/wp-content/uploads/2013/02/large-scale-near-real-time-stream-processing-tathagata-das-strata-2013.pdf

