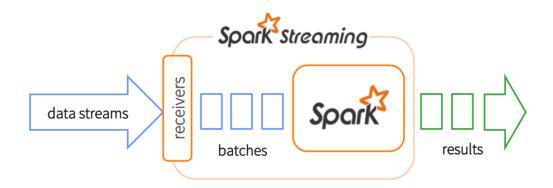
Spark Streaming

Guido Salvaneschi

Spark Streaming

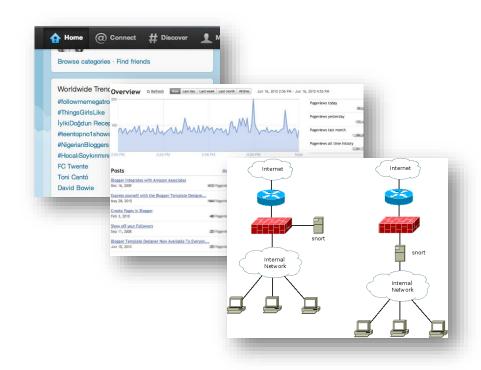
- Framework for large scale stream processing
 - Scales to 100s of nodes
 - Can achieve second scale latencies
 - Integrates with Spark's batch and interactive processing
 - Provides a simple batch-like API for implementing complex algorithm
 - Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.



Motivation

- Many important applications must process large streams of live data and provide results in <u>near-real-time</u>
 - Social network trends
 - Website statistics
 - Intrustion detection systems
 - etc.

- Scalable to large clusters
- Second-scale latencies
- Simple programming model



Example: Monitoring

Real-time monitoring of online video metadata

Two processing stacks:

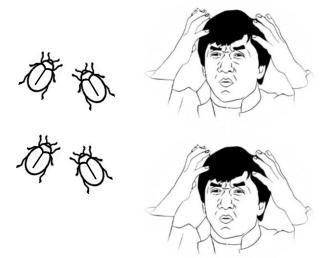
- Custom-built distributed stream processing system
 - 1000s complex metrics on millions of video sessions
 - Requires many dozens of nodes for processing
- Hadoop backend for offline analysis
 - Generating daily and monthly reports
 - Similar computation as the streaming system

Integrated batch & interactive processing?

Two stacks

- Existing frameworks cannot do both
 - Either, stream processing of 100s of MB/s with low latency
 - Or, batch processing of TBs of data with high latency

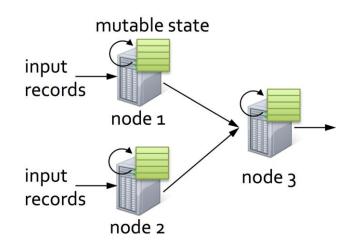
- Extremely painful to maintain two different stacks
 - Different programming models
 - Doubles implementation effort
 - Doubles operational effort



Fault-tolerant Stream Processing

- Traditional processing model
- Pipeline (graph) of nodes
- Each node maintains mutable state
- Each input record updates the state and new records are sent out

- Mutable state is lost if node fails
- Making stateful stream processing fault-tolerant is challenging!



Existing streaming systems

Storm

- Replays record if not processed by a node
- Processes each record at least once
- May update mutable state twice!
- Mutable state can be lost due to failure!

Trident

- high-level abstraction for doing realtime computing on top of Storm
- Use transactions to update state
- Processes each record exactly once
- Per-state transaction to external database is slow

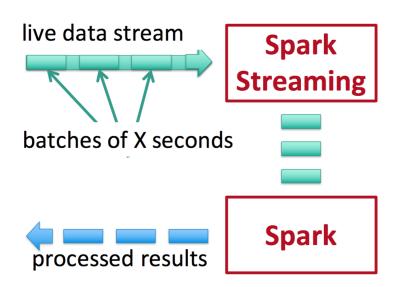
Spark streamaing

- Receive data streams from input sources
- Process them in a cluster
- Push out to databases/ dashboards

• Scalable, fault-tolerant, second-scale latencies

Microbatching

- Run a streaming computation as a series of very small, deterministic batch jobs
 - Chop up data streams into batches of few secs
 - Batch sizes as low as ½ second, latency ~ 1 second
 - Spark treats each batch of data as RDDs and processes them using RDD operations
 - Processed results are pushed out in batches



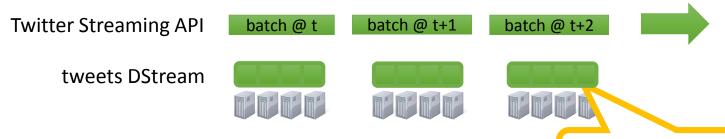
Spark Streaming Programming model

- Discretized Stream (DStream)
 - Represents a stream of data
 - Implemented as a sequence of RDDs
- DStreams API very similar to RDD API
 - Functional APIs in Scala, Java
 - Create input DStreams from different sources
 - Apply parallel operations

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data



stored in memory as an RDD (immutable, distributed)

Example 1 – Get hashtags from Twitter

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
new DStream
                  transformation: modify data in one Dstream to create another DStream
                                                  batch @ t+2
                                     batch @ t+1
                         batch @ t
        tweets DStream
                            latMap
                                         latMap
                                                      Ilat Map
                                                              new RDDs created for
        hashTags Dstream
        [#cat, #dog, ...]
                                                                  every batch
```

Example 1 – Get hashtags from Twitter

Java Example

Scala

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

Java

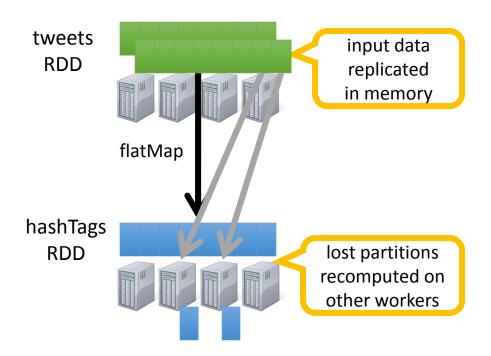
```
JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter
password>)

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })
hashTags.saveAsHadoopFiles("hdfs://...")
```

Function object to define the transformation

Fault-tolerance

- RDDs are remember the sequence of operations that created it from the original fault-tolerant input data
- Batches of input data are replicated in memory of multiple worker nodes, therefore fault-tolerant
- Data lost due to worker failure, can be recomputed from input data

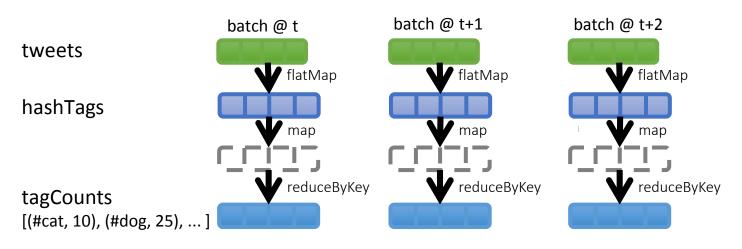


Key concepts

- **DStream** sequence of RDDs representing a stream of data
 - Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets
- **Transformations** modify data from on DStream to another
 - Standard RDD operations map, countByValue, reduce, join, ...
 - Stateful operations window, countByValueAndWindow, ...
- Output Operations send data to external entity
 - saveAsHadoopFiles saves to HDFS
 - foreach do anything with each batch of results

Example 2 – Count the hashtags

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.countByValue()
```



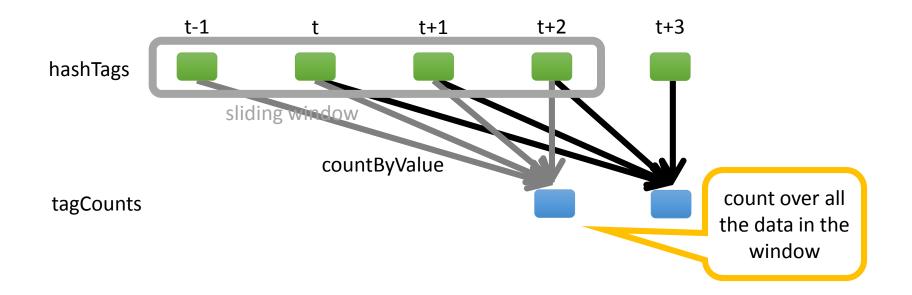
Example 3: Count the hashtags over last 10 mins

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window
    operation
window length
sliding interval
```

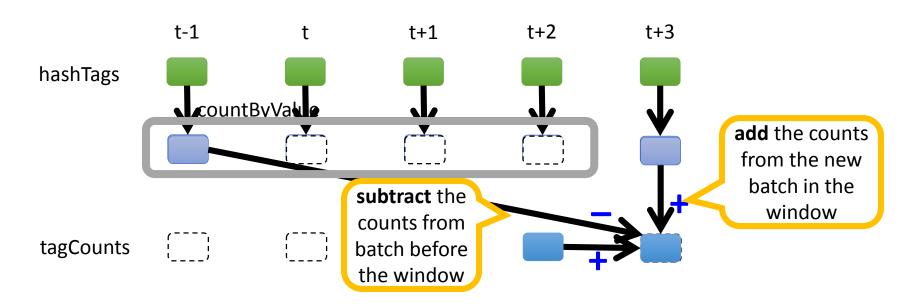
Example 3: Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()



Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))



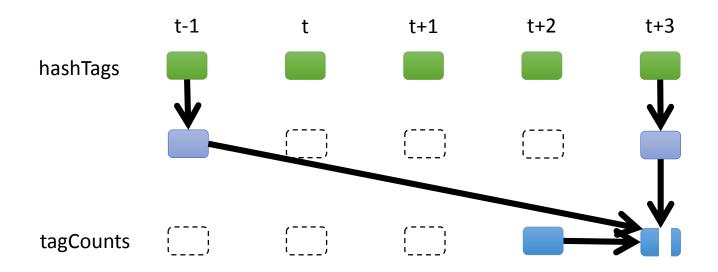
Smart window-based reduce

- Technique to incrementally compute count generalizes to many reduce operations
 - Need a function to "inverse reduce" ("subtract" for counting)
- Could have implemented counting as:

```
hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), ...)
```

Fault-tolerant Stateful Processing

All intermediate data are RDDs, hence can be recomputed if lost



Fault-tolerant Stateful Processing

- State data not lost even if a worker node dies
 - Does not change the value of your result
- Exactly once semantics to all transformations
 - No double counting!

Other Interesting Operations

- Maintaining arbitrary state, track sessions
 - Maintain per-user mood as state, and update it with his/her tweets

```
tweets.updateStateByKey(tweet => updateMood(tweet))
```

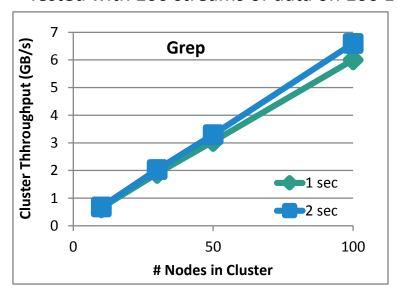
- Do arbitrary Spark RDD computation within DStream
 - Join incoming tweets with a spam file to filter out bad tweets

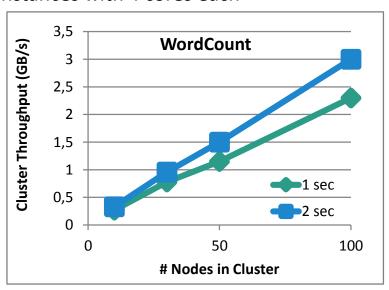
```
tweets.transform(tweetsRDD => {
        tweetsRDD.join(spamHDFSFile).filter(...)
})
```

Performance

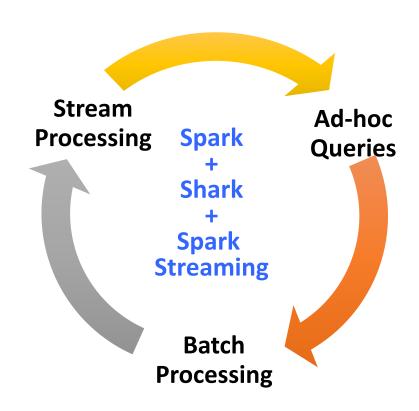
Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency

Tested with 100 streams of data on 100 EC2 instances with 4 cores each





Vision - one stack to rule them all



Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream

```
val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

Spark program on Twitter log file

```
val tweets = sc.hadoopFile("hdfs://...")
val hashTags = tweets.flatMap (status => getTags(status))
hashTags.saveAsHadoopFile("hdfs://...")
```

Vision - one stack to rule them all

- Explore data interactively using Spark Shell / PySpark to identify problems
- Use same code in Spark stand-alone programs to identify problems in production logs
- Use similar code in Spark Streaming to identify problems in live log streams

```
$ ./spark-shell
scala> val file = sc.hadoopFile("smallLogs")
scala> val filtered = file.filter( .contains("ERROR"))
  object ProcessProductionData {
    def main(args: Array[String]) {
      val sc = new SparkContext(...)
      val file = sc.hadoopFile("productionLogs")
      val filtered = file.filter( .contains("ERROR"))
      val mapped = file.map(...)
    object ProcessLiveStream {
      def main(args: Array[String]) {
        val sc = new StreamingContext(...)
        val stream = sc.kafkaStream(...)
        val filtered = file.filter(_.contains("ERROR"))
        val mapped = file.map(...)
```

Questions?

Sources & References

Lecture mostly mased on:

 http://ampcamp.berkeley.edu/wp-content/uploads/2013/02/largescale-near-real-time-stream-processing-tathagata-das-strata-2013.pdf

Thoughts on realtime analytics:

https://iwringer.wordpress.com/tag/bigdata/