Exam Preparation

Guido Salvaneschi

Lecture Material

Lectures

* Intro to dist. systems

* MapReduce

* HDFS

* Hive, HBase, Yarn

* Futures, Promises, Actors
e Spark

* Spark streaming

Exercises
* MapReduce
* Futures, Actors

e Spark

Papers
* MapReduce
* GFS

e Spark

Warning!

* These are just examples of the kind of questions that can
appear in the exam.

* They are not supposed to be complete (of course).

* They are not representative of the coverage of the course topics
in the exam.

* They do not cover questions about coding
(but “simple” exercises provide good examples for that).

Explain 3 reasons that motivate building a
system in a distributed way

Why Distributed Systems

 Functional distribution

» Computers have different functional capabilities (e.g., File server, printer) yet
may need to share resources

* Client / server
» Data gathering / data processing

* Incremental growth
 Easier to evolve the system
* Modular expandability

* Inherent distribution in application domain
* Banks, reservation services, distributed games, mobile apps
 physically or across administrative domains
 cash register and inventory systems for supermarket chains
e computer supported collaborative work

Why Distributed Systems

Economics

* collections of microprocessors offer a better price/ performance ratio than large
mainframes.

* Low price/performance ratio: cost effective way to increase computing power.

Better performance
* Load balancing
* Replication of processing power

* A distributed SY]stem may have more total computin%power than a mainframe. Ex. 10,000
CPU chips, each running at 50 MIPS. Not possible to build 500,000 MIPS single processor
éinceki)t would require 0.002 nsec instruction cycle. Enhanced performance through load

istributing.

Increased Reliability
* Exploit independent failures property
* If one machine crashes, the system as a whole can still survive.

Another driving force: the existence of large number of personal computers, the
need for people to collaborate and share information.

Explain 3 goals (and challenges) of distributed
systems

Goals and challenges of distributed systems

* Transparency
* How to achieve the single-system image

Performance
* The system provides high (computing, storage, ..) performance

Scalability

* The ability to serve more users, provide acceptable I
response times with increased amount of data

Openness
* An open distributed system can be extended and improved incrementally

* Requires publication of component interfaces and standards protocols for accessing
interfaces

Reliability / fault tolerance
* Maintain availability even when individual components fail

Heterogeneity
* Network, hardware, operating system, programming languages, different developers

Security
* Confidentiality, integrity and availability

CHALLENGES
AHEAD

Which techniques can be used to make a
system scalable? Briefly explain them.

Scaling techniques

Countries

}4 Generic »{ }‘

DRCORCINEY
sun
en /cs q

N

ai linda

robot

Distribution

 Splitting a resource (such as data) into smaller parts,
and spreading the parts across the system (cf DNS)

10

Scaling techniques

* Replication

* Replicate resources (services, data) across the system,

can access them in multiple places

» Caching to avoid recomputation

* Increased availability reduces the probability that a bigger system breaks

* Hiding communication latencies

* Avoid waiting for responses to
remote service requests

» Use asynchronous communication

Synchronous Asynchronous

Process A Process B Process A Process B

e e
Wait for Continue
response working
Get
response

11

Show the signature of the Map function and the
Reduce function in MapReduce.

What is the Map phase and what are the Reduce
phase responsible for?

: Note: There is no precise 1-1 |
| correspondence. Please take :
this just as an analogy. I

|
b e e e e e e e e e = =

Functional programming
“foundations”

* map in MapReduce €< map in FP
2P In MapReduce ¢ 000000
e Example: Double all numbers in a list. | | | | | |

r T T T T 7
* >map ((*) 2) [1, 2, 3] ...-..

>[2, 4, 6]

* In a purely functional setting, an element of a list being computed by
map cannot see the effects of the computations on other elements.

* If the order of application of a function f to elements in a list is
commutative, then we can reorder or parallelize execution.

13

: Note: There is no precise 1-1 |
| correspondence. Please take :
this just as an analogy. I

|
b e e e e e e e e e = =

Functional programming
“foundations”

* Move over the list, apply f to each element and an accumulator. f
returns the next accumulator value, which is combined with the next

element.

* reduce in MapReduce < fold in FP
e foldl::(b>a—>b)>b—>[a]>b

e Example: Sum of all numbers in a list.
« > foldl (+) 0 [1, 2, 3] foldl (+) O [1, 2, 3]
>6 returned

'LIIIL]

accumulators

14

MapReduce Basic Programming Model

* Transform a set of input key-value pairs to a set of output values:

* Map: (k1, v1) = list(k2, v2)
* MapReduce library groups all

intermediate pairs with same key together.

* Reduce: (k2, list(v2)) = list(v2)

How MapReduce Works?

-0 01l

I I B <IIIIII/ /

15

What is the problem with “stragglers” (slow
workers) and what can be done to solve this
problem?

Stragglers & Backup Tasks

* Problem: “Stragglers” (i.e., slow workers) significantly lengthen the
completion time.

* Solution: Close to completion, spawn backup copies of the remaining
in-progress tasks.
* Whichever one finishes first, “wins”.

* Additional cost: a few percent more resource usage.
* Example: A sort program without backup = 44% longer.

Sketch the GFS architecture presenting the
components that constitutes it and the main
interactions.

GFS - Overview

a GFS Cluster)
'GFS Master o A
R (FileName, ByteOffset for Operation) -Alloc. At master
Application -Lazy Alloc.

(FileName, Chunkindex) N File Namespace -Repicated at least 34

| ~—» [home/bar

(ChunkHandle, Chunk Addresses) /F)I\. /| ChunkOxAAAA
\- | L

State of the
Chunkserver

(ChunkHandle, Start.Addr/End.Addr)

(Daten)

File broken up into chunks
64bit unique chunkhandle

Storage at Chunkserver Contains Chunks 5 @

N

19

Explain what a future is

Explain what a future is

* Placeholder object for a value that may not yet exist

* The value of the Future is supplied concurrently and can
subsequently be used

Which underlying data structure is used by
Apache Spark? Show a minimal example and
indicate where such data structure is used.

RDD (Resilient Distributed Datasets)

e Restricted form of distributed shared memory

immutable, partitioned collection of records

can only be built through coarse-grained deterministic transformations
(map, filter, join...)

* Efficient fault-tolerance using lineage

Log coarse-grained operations instead of fine-grained data updates

An RDD has enough information about how it’s derived from other
dataset

Recompute lost partitions on failure

Spark and RDDs

* Implements Resilient Distributed Datasets (RDDs)

* Operations on RDDs
* Transformations: defines new dataset based on previous ones
e Actions: starts a job to execute on cluster

* Well-designed interface to represent RDDs
 Makes it very easy to

implement transformations Operation Meaning
. partitions() Return a list of Partition objects
d IVI (0] St S p ar k t ran Sfo rm at on preferredLocations(p) | List nodes where partition p can be
. . accessed faster due to data locality
Im p I eme ntat ion < 2 O LOC dependencies() Return a list of dependencies

iterator(p, parentlters) | Compute the elements of partition p
given iterators for its parent partitions

partitioner() Return metadata specifying whether
the RDD is hash/range partitioned

Table 3: Interface used to represent RDDs in Spark.

More on RDDs

Work with distributed collections as you would with local ones

* Resilient distributed datasets (RDDs)
* Immutable collections of objects spread across a cluster
 Built through parallel transformations (map, filter, etc)
* Automatically rebuilt on failure

» Controllable persistence (e.g., caching in RAM)
» Different storage levels available, fallback to disk possible

* Operations
* Transformations (e.g. map, filter, groupBy, join)
* Lazy operations to build RDDs from other RDDs

* Actions (e.g. count, collect, save)
e Return a result or write it to storage

Workflow with RDDs

* Create an RDD from a data source: <list> 8
* Apply transformations to an RDD: map filter
* Apply actions to an RDD: collect count

<list> —>{ RDD J'—{ fittered RDD *—{ mapped ROD]J]
parallelize filter map

\

collect action causes parallelize, filter,
and map transforms to be executed

Result

distFile = sc.textFile("...", 4)
e RDD distributed in 4 partitions
e Elements are lines of input
* Lazy evaluation means no execution happens now

26

Give a possible explanation why the computation
of the Page Rank is significantly different between
Hadoop and Spark

200
180

171

w160 Hadoop
o 140
£ 120 2 Spark
B 100
5 80 L
= 60 Q
S 40 3
fod 20 I T

0

30 60

Number of machines

Spark

* Fast, expressive cluster computing system compatible with
Apache Hadoop

* Works with any Hadoop-supported storage system (HDFS, S3, Avro, ...)

* Improves efficiency through:
* In-memory computing primitives
* General computation graphs

* Improves usability through:

e Rich APIs in Java, Scala, Python
* Interactive shell

Page Rank

* Give pages ranks (scores) based on links to them

* Links from many pages = high rank
* Link from a high-rank page = high rank

* Good example of a more complex algorithm
e Multiple stages of map & reduce

* Benefits from Spark’s in-memory caching
* Multiple iterations over the same data

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

What is a resource management system,
e.g., Apache YARN?

Resource Management

 Typically implemented by a system deployed across nodes of a
cluster

 Layer below “frameworks” like Hadoop
* On any node, the system keeps track of availabilities

* Applications on top use information and estimations of own requirements to
choose where to deploy something

* RM systems (RMSs) differ in abstractions/interface provided and actual scheduling
decisions

Batch JInteract. § lterative § Stream Graph
Hadoopl Tez Flink Storm o Giraph

Resource Management System

Distributed File System

Given the scenario X, what is the
technology/approach that you would recommend
for solving problem Y ?

* MapReduce

* HDFS

* A database

* HBase

* Apache Spark
 Spark streaming

MapReduce vs.

Traditional RDBMS

MapReduce Traditional RDBMS
Data size Petabytes Gigabytes
Access Batch Interactive and batch
Updates Write once, read many Rgad and write many
times times
Structure Dynamic schema Static schema
Integrity Low High (normalized data)
-li I
Scaling Linear Non-linear (genera

sqL)

33

A Summary

MPI

MapReduce

DBMS/SQL

What they are A general parrellel

programming paradigm

A programming paradigm
and its associated execution
system

A system to store, manipulate
and serve data.

Programming Model |Messages passing between

nodes

Restricted to Map/Reduce
operations

Declarative on data
query/retrieving;
Stored procedures

Data organization No assumption

"files" can be sharded

Organized datastructures

Data to be manipulated |Any

k,v pairs: string

Tables with rich types

Execution model Nodes are independent

Map/Shuffle/Reduce
Checkpointing/Backup
Physical data locality

Transaction
Query/operation optimization
Materialized view

Usability Steep learning curve*;

difficult to debug

Simple concept
Could be hard to optimize

Declarative interface;
Could be hard to debug in
runtime

Flexible to accommodate
various applications

Key selling point

Plow through large amount
of data with commodity
hardware

Interactive querying the data;
Maintain a consistent view
across clients

>4

Programming Model

Declarative

Procedural

i DBMS/sQL
MAP REDUCE
MPI

<€ >
Flat Raw Types Structured

Data Organization

35

Event-driven applications

o

R

N —
—

Il

* Can we use existing technologies for batch processing?
* They are not designed to minimize latency
* We need a whole new model!

Esper in a nutshell

* EPL: rich language to express rules

* Grounded on the DSMS approach
* Windowing
* Relational select, join, aggregate, ...

 Relation-to-stream operators to produce output
e Sub-queries

* Queries can be combined to form a graph

* Introduces some features of CEP languages
 Pattern detection

* Designed for performance
* High throughput
* Low latency

Goals

1) w—

(Batch
One
| — stack to | bl
& > rule them all? =7 !
[Interactive < > | Streaming |

= Easy to combine batch, streaming, and interactive computations
= Easy to develop sophisticated algorithms
. Compatible with existing open source ecosystem (Hadoop/HDFS)

o) 100k

<@ (100M
©

-

T

© 2

+~ O

8§ 1k events
= (1MBs)
2%

©

) 100 events
N (10 KBs)
n

n-Memory

Computing
(Spark, Hana,
VoltDB)

Interactive
Processing

(e.q. Dnill

Indexed

(CEP, Stream Storage

seconds minutes
Time to Act

hours

days

39

