
Exam	Preparation
Guido	Salvaneschi

1



Lecture	Material

Lectures
• Intro	to	dist.	systems
• MapReduce
• HDFS
• Hive,	HBase,	Yarn
• Futures,	Promises,	Actors
• Spark
• Spark	streaming

2

Papers
• MapReduce
• GFS
• Spark

Exercises
• MapReduce
• Futures,	Actors
• Spark



Warning!	

• These	are	just	examples	of	the	kind	of	questions	that	can	
appear	in	the	exam.

• They	are	not	supposed	to	be	complete	(of	course).

• They	are	not	representative	of	the	coverage	of	the	course	topics	
in	the	exam.

• They	do	not	cover	questions	about	coding	
(but	“simple”	exercises	provide	good	examples	for	that).

3



Explain	3	reasons	that	motivate	building	a	
system	in	a	distributed	way

4



Why	Distributed	Systems

• Functional	distribution	
• Computers	have	different	functional	capabilities	(e.g.,	File	server,	printer	)	yet	
may	need	to	share	resources	

• Client	/	server
• Data	gathering	/	data	processing	

• Incremental	growth
• Easier	to	evolve	the	system
• Modular	expandability	

• Inherent	distribution	in	application	domain	
• Banks,	reservation	services,	distributed	games,	mobile	apps
• physically	or	across	administrative	domains
• cash	register	and	inventory	systems	for	supermarket	chains
• computer	supported	collaborative	work	



Why	Distributed	Systems

• Economics	
• collections	of	microprocessors	offer	a	better	price/	performance	ratio	than	large	
mainframes.

• Low	price/performance	ratio:	cost	effective	way	to	increase	computing	power.

• Better	performance
• Load	balancing
• Replication	of	processing	power	
• A	distributed	system	may	have	more	total	computing	power	than	a	mainframe.		Ex.	10,000	
CPU	chips,	each	running	at	50	MIPS.	Not	possible	to	build	500,000	MIPS	single	processor	
since	it	would	require	0.002	nsec instruction	cycle.	Enhanced	performance	through	load	
distributing.

• Increased	Reliability
• Exploit	independent	failures	property
• If	one	machine	crashes,	the	system	as	a	whole	can	still	survive.

• Another	driving	force:	the	existence	of	large	number	of	personal	computers,	the	
need	for	people	to	collaborate	and	share	information.



Explain	3	goals	(and	challenges)	of	distributed	
systems	



Goals	and	challenges	of	distributed	systems

• Transparency
• How	to	achieve	the	single-system	image

• Performance
• The	system	provides	high	(computing,	storage,	..)	performance

• Scalability
• The	ability	to	serve	more	users,	provide	acceptable	
response	times	with	increased	amount	of	data	

• Openness	
• An	open	distributed	system	can	be	extended	and	improved		incrementally	
• Requires	publication	of	component	interfaces	and	standards	protocols	for	accessing	
interfaces	

• Reliability	/	fault	tolerance	
• Maintain	availability	even	when	individual	components	fail

• Heterogeneity	
• Network,	hardware,	operating	system,	programming	languages,	different	developers

• Security
• Confidentiality,	integrity	and	availability



Which	techniques	can	be	used	to	make	a	
system	scalable?	Briefly	explain	them.	

9



Scaling	techniques

Distribution
• Splitting	a	resource	(such	as	data)	into	smaller	parts,	
and	spreading	the	parts	across	the	system	(cf DNS)	

10



Scaling	techniques

• Replication
• Replicate	resources	(services,	data)	across	the	system,	
can	access	them	in	multiple	places	

• Caching	to	avoid	recomputation
• Increased	availability	reduces	the	probability	that	a	bigger	system	breaks

• Hiding	communication	latencies	
• Avoid	waiting	for	responses	to	
remote	service	requests	

• Use	asynchronous	communication

11



Show	the	signature	of	the	Map	function	and	the	
Reduce	function	in	MapReduce.	
What	is	the	Map	phase	and	what	are	the	Reduce	
phase	responsible	for?



Functional	programming	
“foundations”

• map	in	MapReduce	↔	map	in	FP	
• map::(a→b)→[a]→[b]
• Example:	Double	all	numbers	in	a	list.	
• >	map	((*)	2)	[1,	2,	3]
>	[2,	4,	6]	

• In	a	purely	functional	setting,	an	element	of	a	list	being	computed	by	
map	cannot	see	the	effects	of	the	computations	on	other	elements.	

• If	the	order	of	application	of	a	function	f	to	elements	in	a	list	is	
commutative,	then	we	can	reorder	or	parallelize	execution.	

13

Note:	There	is	no	precise	1-1	
correspondence.	Please	take	
this	just	as	an	analogy.



Functional	programming	
“foundations”

• Move	over	the	list,	apply	f	to	each	element	and	an	accumulator.	f	
returns	the	next	accumulator	value,	which	is	combined	with	the	next	
element.	

• reduce	in	MapReduce	↔	fold	in	FP	
• foldl ::	(b	→	a	→	b)	→	b	→	[a]	→	b
• Example:	Sum	of	all	numbers	in	a	list.	
• >	foldl (+)	0	[1,	2,	3]	foldl (+)	0	[1,	2,	3]
>	6	

14

Note:	There	is	no	precise	1-1	
correspondence.	Please	take	
this	just	as	an	analogy.



MapReduce	Basic	Programming	Model	

• Transform	a	set	of	input	key-value	pairs	to	a	set	of	output	values:	
• Map:	(k1,	v1)	→	list(k2,	v2)
• MapReduce	library	groups	all	
intermediate	pairs	with	same	key	together.

• Reduce:	(k2,	list(v2))	→	list(v2)	

15



What	is	the	problem	with	“stragglers”	(slow	
workers)	and	what	can	be	done	to	solve	this	
problem?



Stragglers	&	Backup	Tasks	

• Problem:	“Stragglers”	(i.e.,	slow	workers)	significantly	lengthen	the	
completion	time.	

• Solution:	Close	to	completion,	spawn	backup	copies	of	the	remaining	
in-progress	tasks.	

• Whichever	one	finishes	first,	“wins”.	

• Additional	cost:	a	few	percent	more	resource	usage.	
• Example:	A	sort	program	without	backup	=	44%	longer.	

17



Sketch	the	GFS	architecture	presenting	the	
components	that	constitutes	it	and	the	main	
interactions.



GFS	- Overview

19



Explain	what	a	future	is

20



Explain	what	a	future	is

21

• Placeholder	object	for	a	value	that	may	not	yet	exist
• The	value	of	the	Future	is	supplied	concurrently	and	can	
subsequently	be	used



Which	underlying	data	structure	is	used	by	
Apache	Spark?	Show	a	minimal example	and	
indicate	where	such	data	structure	is	used.

22



RDD (Resilient	Distributed	Datasets	)

• Restricted	form	of	distributed	shared	memory
• immutable,	partitioned	collection	of	records
• can	only	be	built	through	coarse-grained	deterministic	transformations	

(map,	filter,	join...)

• Efficient	fault-tolerance	using	lineage
• Log	coarse-grained	operations	instead	of	fine-grained	data	updates
• An	RDD	has	enough	information	about	how	it’s	derived	from	other	

dataset
• Recompute lost	partitions	on	failure

23



Spark	and	RDDs

• Implements	Resilient	Distributed	Datasets	(RDDs)

• Operations	on	RDDs
• Transformations:	defines	new	dataset	based	on	previous	ones
• Actions:	starts	a	job	to	execute	on	cluster

• Well-designed	interface	to	represent	RDDs
• Makes	it	very	easy	to	

implement	transformations
• Most	Spark	transformation	

implementation	<	20	LoC

24



More	on	RDDs

Work	with	distributed	collections	as	you	would	with	local	ones

• Resilient	distributed	datasets	(RDDs)
• Immutable	collections	of	objects	spread	across	a	cluster
• Built	through	parallel	transformations	(map,	filter,	etc)
• Automatically	rebuilt	on	failure
• Controllable	persistence	(e.g.,	caching	in	RAM)

• Different	storage	levels	available,	fallback	to	disk	possible

• Operations
• Transformations (e.g.	map,	filter,	groupBy,	join)

• Lazy	operations	to	build	RDDs	from	other	RDDs
• Actions (e.g.	count,	collect,	save)

• Return	a	result	or	write	it	to	storage



Workflow	with	RDDs

• Create	an	RDD	from	a	data	source:	 <list>
• Apply	transformations	to	an	RDD:	map	filter
• Apply	actions	to	an	RDD:	collect	count	

distFile = sc.textFile("...", 4) 
• RDD	distributed	in	4	partitions	
• Elements	are	lines	of	input	
• Lazy	evaluation	means	no	execution	happens	now	

26



Give	a	possible	explanation	why	the	computation	
of	the	Page	Rank	is	significantly	different	between	
Hadoop and	Spark

17
1

80

23

14

0
20
40
60
80
100
120
140
160
180
200

30 60

Ite
ra
tio

n	
tim

e	
(s
)

Number	of	machines

Hadoop
Spark



Spark

• Fast,	expressive	cluster	computing	system	compatible	with	
Apache	Hadoop

• Works	with	any	Hadoop-supported	storage	system	(HDFS,	S3,	Avro,	…)

• Improves	efficiency through:
• In-memory	computing	primitives
• General	computation	graphs

• Improves	usability through:
• Rich	APIs	in	Java,	Scala,	Python
• Interactive	shell

Up to 100× faster

Often 2-10× less code



Page	Rank

• Give	pages	ranks	(scores)	based	on	links	to	them
• Links	from	many	pages	è high	rank
• Link	from	a	high-rank	page	è high	rank

• Good	example	of	a	more	complex	algorithm
• Multiple	stages	of	map	&	reduce

• Benefits	from	Spark’s	in-memory	caching
• Multiple	iterations	over	the	same	data

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png 



What	is	a	resource	management	system,
e.g.,	Apache	YARN?



Resource	Management

• Typically	implemented	by	a	system	deployed	across	nodes	of	a	
cluster

• Layer	below	“frameworks”	like	Hadoop
• On	any	node,	the	system	keeps	track	of	availabilities
• Applications	on	top	use	information	and	estimations	of	own	requirements	to	
choose	where	to	deploy	something

• RM	systems	(RMSs)	differ	in	abstractions/interface	provided	and	actual	scheduling	
decisions



Given	the	scenario	X,	what	is	the	
technology/approach	that	you	would	recommend	
for	solving	problem	Y	?
• MapReduce
• HDFS
• A	database
• HBase
• Apache	Spark
• Spark	streaming
• ...

32



MapReduce	vs.	Traditional	RDBMS	

MapReduce	 Traditional	RDBMS	
Data	size	 Petabytes	 Gigabytes	
Access	 Batch	 Interactive	and	batch	

Updates	 Write	once,	read	many	
times	

Read	and	write	many	
times	

Structure	 Dynamic	schema	 Static	schema	
Integrity	 Low	 High	(normalized	data)	

Scaling	 Linear	 Non-linear	(general	
SQL)	

33



A	Summary

34



35

Pr
og
ra
m
m
in
g	
M
od

el

Data	Organization

De
cl
ar
at
iv
e

StructuredFlat	Raw	Types

Pr
oc
ed

ur
al



Event-driven	applications

• Can	we	use	existing	technologies	for	batch	processing?
• They	are	not	designed	to	minimize	latency
• We	need	a	whole	new	model!



Esper in	a	nutshell

• EPL:	rich	language	to	express	rules
• Grounded	on	the	DSMS	approach

• Windowing
• Relational	select,	join,	aggregate,	…
• Relation-to-stream	operators	to	produce	output
• Sub-queries

• Queries	can	be	combined	to	form	a	graph
• Introduces	some	features	of	CEP	languages

• Pattern	detection

• Designed	for	performance
• High	throughput
• Low	latency



Goals

Batch

Interactive Streaming

One 
stack to 

rule them all?

§ Easy to combine batch, streaming, and interactive computations
§ Easy to develop sophisticated algorithms
§ Compatible with existing open source ecosystem (Hadoop/HDFS)



39


