
Exercise 6:
Apache Spark

Concepts and Technologies for Distributed Systems and Big Data Processing – SS 2017

Solution 2 Count Errors

You can download the code for the solution for this task from the course website.

Solution 3 Approximate Pi

You can download the code for the solution for this task from the course website.

Solution 4 Reverse Graph

Referring to exercise 3, where ReverseGraph was implemented in Hadoop, complete the following code for ReverseGraph
using Spark. ReverseGraph should reverse the direction of the edges in a directed graph.

1 Seq(

2 3 -> Seq(1, 2),

3 1 -> Seq(2, 3))

(a) Input

1 Seq(

2 1 -> Seq(3),

3 2 -> Seq(1, 3),

4 3 -> Seq(1))

(b) Expected output.

Figure 1: ReverseGraph

A possible input is given in Figure 1a, where each element in the sequence is a pair which assigns the list of outgoing
edges to the nodes in the graph. The expected output is given in Figure 1b. As you can see, for each edge a→ b in the
input there is a corresponding edge b→ a in the output.

1 val sc = new SparkContext
2 val graph = Seq(/* ... */)
3

4 val reversedGraph = (sc parallelize graph flatMap {
5 case (node, edges) => edges map { (_, node) }
6 }).groupByKey.collect

For this task, you should look at the following Spark operators available on RDD[T] objects (RDD[T] objects are created
by methods such as sc.textFile(path) or sc.parallelize(seq)):

def map[U](f: T => U): RDD[U]
def flatMap[U](f: T => TraversableOnce[U]): RDD[U]

1

