Dr. Michael Eichberg

Software Technology Group
Department of Computer Science
Technische Universitat Darmstadt

Introduction to Software Engineering

Object-Oriented Thinking

TECHNISCHE
UNIVERSITAT
DARMSTADT

Object-Oriented Thinking

* Class-Responsibility-Collaboration Cards

(A very first glimpse of object-oriented analysis and
design.)

G ; TECHNISCHE
UNIVERSITAT
DARMSTADT

A First Glimpse on OO Analysis and Design.

Object-Oriented Thinking | 3

® \\/e want to develop a library for representing vector
graphics

® \We want to support:
Sguares
Circles

rlangles

ext

® \\le want to be able to export figures as PDF and SVG
documents

A Class-Responsibility-Collaboration (CRC) Card

Object-Oriented Thinking | 4

other classes

Class Collaborations

» <collaborator A>

<c|assname>
» <collaborator B>

Responsibilities > ...

> <resl:>onsibilitg A>
> <res[:>onsibilitg B>
> ...

short eng.

sentences

Class-Responsibility-Collaboration (CRC) cards help to
discuss object-oriented designs.

Object-Oriented Thinking | 5

* The class nhame of an object creates a vocabulary for
discussing the design: you should spent enough time to
find the right words

» Responsibilities identify problems to be solved: &
responsibility serves as a handle for discussing potential
solutions; they are expressed using short verb phrases
each containing an active verb

* Collaborators are the objects which will send or
receive messages in the course of satisfying
responsibilities

First, we have to identify potential classes.

Object-Oriented Thinking | 6

® \\/e want to develop a library for representing vector
graphics

® \We want to support:
Sguares
Circles

rlangles

ext

® \\le want to be able to export figures as PDF and SVG
documents

First, we identify potential classes.

Object-Oriented Thinking | 7

® \\le want to develop a library for representing vector
graphics

® \We want to support:
® Squares
® Circles
® Triangles
® Text

® \We want to be able to export figures as PDF ano
SVG documents

We start by

identifying nouns.

For each potential class, we create a CRC card.

Class

Class

Object-Oriented Thinking | 8

Collaborations

Collaborations

Text

Responsibilities

Square

Responsibilities

Class

Collaborations

Triangle

Responsibilities

Class

Collaborations

Circle

Responsibilities

HSetupH

For each potential class, we create a CRC card.

Object-Oriented Thinking | 9

Class

Collaborations

i gure

Responsibilities

Class

Collaborations

FPDFDocument

Responsibilities

Class

Collaborations

SVGDocument

Responsibilities

llSetupH

We then identify responsibilities and collaborators.

Class

Collaborations

Class

Object-Oriented Thinking | 10

Collaborations

Text

Responsibilities

» Maintain the text

Square

Responsibilities

» Maintain the

square’s data

Class

Collaborations

Triangle

Responsibilities

» Maintain the
triangle’s data

Class

Collaborations

Circle

Responsibilities

» Maintain the

circle’s data

We then identify responsibilities and collaborators.

Object-Oriented Thinking | 11

Class Collaborations
PDFDocument
Class Collaborations
Responsibilities
F“igure » Create a “.PCJP’
Responsibilities file
» Maintain a list of
“shapes”
Class Collaborations
SVGDocument

Responsibilities

» Create a “.svg” file

We incrementally refine our cards.

Object-Oriented Thinking | 12

Class Collaborations
PDFDocument
Class Collaborations N
Responsibilities
l:igure) Create—
Responsibilities ' Saﬁca;lgure =
» Maintain a list of P ©
“shapes”
Class Collaborations
SVGDocument

Responsibilities
b rFeate—

» Save a ﬁgure to a

“.svg” file

We incrementally refine our cards.

Object-Oriented Thinking | 13

Class Collaborations
PEFDocument
Class Collaborations PDFDocBwHer
Responsibilities
Figure » Save a ﬁgure to a
Responsibilities ’Pd‘c file
» Maintain a list of
“shapes”
Class Collaborations
SVGPocument

SVGDocBuilder
Responsibilities

» Save a ﬁgure to a

“.svg” file

We then identify responsibilities and collaborators.

Object-Oriented Thinking | 14

Class Collaborations
, > I
PDFDocBuilder gctic
Class Collaborations L epeas g
Responsibilities » Circle
, » Text ,
Figure , » Save a ﬁgure toa) THandle
» Circle « odf f 5
Responsibilities » Triangle L Lo
» Maintain a list of » Square
“shapes”
Class Collaborations
How do we o2
. SVGDochuilder EHre
support this? b Text
Responsibilities » Circle
» Save a ﬁgure toa) Trianglé
“svg’ file 3 Square

We then identify responsibilities and collaborators.

Class

Collaborations

Class

Object-Oriented Thinking | 15

Collaborations

Text

Responsibilities

» Maintain the text

Square

Responsibilities

» Maintain the

sc]uare’s data

Class

Collaborations

Triangle

Responsibilities

» Maintain the
triangle’s data

Class

Collaborations

Circle

Responsibilities

» Maintain the

circle’s data

We then identify responsibilities and collaborators.

Object-Oriented Thinking | 16

Specific for class-based

languages

Class Collaborations }
- I
Shape N Class Collaborations
Responsibilities Square
» Abstract over Res Class Collaborations
shapes > M
Circle
S
~‘
Res Class Collaborations
——
> M Triangle
cii 7
RespJCIass Collaborations
)
Ma Text
tria
Responsibilities

1> Maintain the text

We then identify responsibilities and collaborators.

Class

Object-Oriented Thinking | 17

Collaborations

SEaPe

Responsibilitie

» Abstract ovd

ShEPCS

N/A

Collaborations ‘ Class
i |
Class Collaborations Color
Sauare » Color
9 Responsibilities
Res Class Collaborati¢” <Onverts between
» M > Color color spaces
Circle
S
Res Class Collaborations
, 4
> M Tr:angle Color
cil
Resp(Class Collaborations
-) 4 l
Ma Text Color
trig
Responsibilities

1y Maintain the text

Object-Oriented Thinking | 18

‘ ‘ We stress the importance of creating objects not
to meet mythical future needs, but only under the
demands of the moment.

Kent Beck, Ward Cunningham

A Laboratory For Teaching OO-Thinking
Proceedings of OOPSLA ‘89; ACM Press

Evolving the Application

Object-Oriented Thinking | 19

® \\le want to support further shapes:

® Stars P

® Bubbles ‘X
® Arrows m
® Bézier curves P' "

o ” 0 Ps

® \\Ve want to support further file formats:
SMP
JPEG
DX

Evolving the Application

® [f we follow the chosen path - 1.e, each XDocBuilder
collaborates with all sha

Object-Oriented Thinking | 20

pes - we end up with this:

R Triangle
‘ PDFDocBuilder | - §$\ -~
7 7 % N h = ~ ~
~ / \ ~

N\ ~ \ ~
N \\ // // \ ~
\\ \’\ \
\ // \\ / \ .
\\ N QA \ DXFDocBuilder
\ —’——
A \ // 7. é— *\ 7
PR N y Bézier curve N Sa—
\ \ 7 \ 7 /
o7 \ ,7/’ \ i /
R _ - \ \4 % ~ \,/ /
/ \\ / \\ // N\ /
. "V
JPEGDocBuilder (3/ >< /N
P \ s S e 7N
~ < / \ // \ // N/ \
- T~~~y \\ pad /3N \\
N ~ \ / N
-~ / 7
N / =~ N & % / AN \\
N / / N~ o / hI—
\\\// / N T //
O~ 7 AN Circle [<----,_______ .
/7 V< / SVGDocBuilder
/ / N 7(/
/ N P /
/ py: N - \ / -~
/ N \ / -
/ // N \ -~
/ / P N / P
, / // ~ \ / _
N\ -
BMPDocBuilder | —-—-___ __ _ _
> Square
e —————————

Evolving the Application

Object-Oriented Thinking | 21

® [f we follow the chosen path -1.e, each ...DocBuilder
collaborates with all shapes - we end up with this:

R Triangle
‘ PDFDocBuilder | T

Consequences:
- Adding a new shape requires updating all

DocBuilders
- Supporting a new file format requires
knowledge of all shapes

BMPDocBuilder | —-—-___ __ _ _

> Square
———

An Example SVG file

Object-Oriented Thinking | 22

A circle Is

A5 represented using
<svg versl -
an ellipse.

4 [...]
12 <rect x7§ff(85" y="218" width="72" height=" ST Vel oWl DleYela1011le[=1ah VA1l

11 <g>

13 <rect x¥ 185" y="218" width="72" height=" : _
14 <ellipse cx="270" cy="327.5" rx="36.0000" Conta|n CIUIte some
15 <ellipse cx="270" cy="327.5" rx="36.00007% : :
16 <path d="M 252 241 L 288 310 L 324 241 7' domain |Og|C. i
17 <path d="M 252 241 L 288 310 L 324 241 Z' e

18 </g>
19 </svg>

148" width="143pt" height="148pt">

No direct

support for
triangles.

We then identify responsibilities and collaborators.

Object-Oriented Thinking | 23

Class Collaborations
PDFDocBuilder % Ig
Class Collaborations ' < e
b Circl
Figure I This solution does not 3.
o | facilitate software
Responsibilities : \ P Square
—— evolution!
» Maintain a list of

“shal:)es”

We need to think again
about the collaborations |

>1Eigbﬂ=e
and respon5|b|I|t|es' i > et

DRI ——"""""" T Respol y Circle

» Save a ﬁgure toa) :l%iaﬂgle
“.svg” file e

Collaborations

There are some things to consider.

Class

Object-Oriented Thinking | 24

Collaborations

Names do matter!

Responsibilities

b If this list gets too long, it’s Probablg
time to split up the class.

» The responsibilities a class has

should be related.

» If this list gets too long, it’s Probablg
time to split up the class. ‘

» I you have cgclic collaboration
clepenclencies its time to think about

introducin g abstractions.

A new class with new responsibilities and collaborators.

Object-Oriented Thinking | 25

Class Collaborations

» Color
Canvas

Responsibilities

» draw text, lines,
bézier curves,

ellipses and points

Class Collaborations

4
Text Color

» Canvas

Responsibilities
1» Maintain the text

» draw itself on a

... using
primitive

canvas

shapes

... ldentification of a
new artificial class
(w.r.t. the domain

description)

We then identify responsibilities and collaborators.

Object-Oriented Thinking | 26

Class Collaborations

PDFDocBuilder > Canvas

Responsibilities

» Save ﬁgure as
“.Pdf” file

» act as a Canvas

Class Collaborations
» Color

Canvas Class Collaborations

Responsibilities SVGDocBulder » Canvas

» draw text, lines,

bézier curves Responsibilities
D)
e”ipses and points > Save ﬁgure as
“.svg” file

» act as a Canvas

Evolving the Application

Object-Oriented Thinking | 27

® [f we follow the new path -1.e, each XDocBuilder is
basically a canvas - we end up with this:

‘ BMPDocBuilder |~ -------- i%t --------- Bézier curve

Il Il
bt
NN
JPEGDocBuilder ~ f----- I Square
bt
b
b
b
[|: I
DXFDocBuilder =~ f----=--=-—-—-- I Circle
T
L
|
|
|
|

|

‘ | N
SVGDocBuilder @ f-—----—-=-==---= R Triangle
‘ PDFDocBuilder |~ ------------

“Background Literature”

* The International
Conference on Object
Oriented Programming,
Systems, Languages and
Applications (OOPSLA); ACM
Press, 1989

Object-Oriented Thinking | 28

A Laboratory For Teaching
Object-Oriented Thinking

Kent Beck, Apple Computer, Inc.
Ward Cunningham, Wyatt Software Services, Inc.

It is difficult to introduce both novice and
experienced procedural programmers to the
anthropomorphic perspective necessary for
object-oriented design. We introduce CRC
cards, which characterize objects by class name,
responsibilities, and collaborators, as a way of
giving learners a direct experience of objects.
We have found this approach successful in
teaching novice programmers the concepts of
objects, and in introducing experienced
programmers to complicated existing designs.

1. Problem

The most difficult problem in teaching object-
oriented programming is getting the learner to
give up the global knowledge of control that is
possible with procedural programs, and rely on
the local knowledge of objects to accomplish
their tasks. Novice designs are littered with
regressions to global thinking: gratuitous global
variables, unnecessary pointers, and
inappropriate reliance on the implementation of

Athor v T

IR

reduces to teaching the design of objects. We
focus on design whether we are teaching basic
concepts to novices or the subtleties of a
complicated design to experienced object
programmers.

Rather than try to make object design as much
like procedural design as possible, we have found
that the most effective way of teaching the
idiomatic way of thinking with objects is to
immerse the learner in the “object-ness” of the
material. To do this we must remove as much
familiar material as possible, expecting that
details such as syntax and programming
environment operation will be picked up quickly
enough once the fundamentals have been
thoroughly understood.

It is in this context that we will describe our
perspective on object design, its concrete
manifestation, CRC (for Class, Responsibility,
and Collaboration) cards, and our experience
using these cards to teach both the fundamentals
and subtleties of thinking with objects.

Object-Oriented Thinking

* The inheritance relationship

%574 TECHNISCHE
&)=\ UNIVERSITAT
' DARMSTADT

A common pitfall in object-oriented design is the
iInheritance relation.

Object-Oriented Thinking | 30

e Now let's assume we want to further evolve our library anad
add support for Rectangles. ..

A common pitfall in object-oriented design is the
iInheritance relation.

Object-Oriented Thinking | 31

e Now let's assume we want to further evolve our library anad
add support for Rectangles. ..

* Should Rectangle inherit from Square?

* Should Square inherit from Rectangle?
* [S there some other solution?

A common pitfall in object-oriented design is the
iInheritance relation.

Object-Oriented Thinking | 32
e Now let's assume we want to further evolve our library anad
add support for Rectangles. ..
* Should Rectangle inherit from Square?
e Should Squargs |
* |S there som A first test:

“Is a Rectangle a Square?”

A common pitfall in object-oriented design is the
iInheritance relation.

Object-Oriented Thinking | 33

e Now let's assume we want to further evolve our library anad
add support for Rectangles. ..

e Should Squargs

* |S there som A first test:
“Is a Rectangle a Square?”

A common pitfall in object-oriented design is the
iInheritance relation.

Object-Oriented Thinking | 34

e Now let's assume we want to further evolve our library anad
add support for Rectangles. ..

* Should Square inherit from Rectangle”

* [S there soO
A first test:
“Is a Square a Rectangle”?

Well... yes, but ... how
about a Square’s behavior?

A common pitfall in object-oriented design is the
iInheritance relation.

Object-Oriented Thinking | 35

e Now let's assume we want to further evolve our library anad
add support for Rectangles. ..

® |S there so

A first test:
“Is a Square a Rectangle”?

Well... yes, but ... how
about a Square’s behavior?

Object-Oriented Thinking

e Summary

A large number of Design Heuristics and Design
Principles exists that help you to design “better”
programs.

Object-Oriented Design | 37

e [ow Coupling

* High Cohesion

* Single Responsibility Principle
e Don't repeat yourself

* No cyclic dependencies

Goal of the Lecture | 38

The goal of this lecture Is to enable you to

systematically carry out sma
projects that produce well-des

[(er) software

igned software.

- Identifying and (re-)distributing responsibilities among objects / classes is
one of the major tasks when designing and evolving object-oriented

programs.

- Having classes with well identified responsibilities facilitates the
comprehension, maintenance and evolution of the software.

