Dr. Michael Eichberg

Software Technology Group
Department of Computer Science
Technische Universitat Darmstadt

Introduction to Software Engineering

Introduction to
Design Patterns

TECHNISCHE
UNIVERSITAT
DARMSTADT

Design Patterns |

Design Patterns =dt. Entwurfsmuster

4
"

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

J143S DIINILAAWOTT TWNOISSIHO¥MA A 1S4 NOSIUAY

SO s 1S S0 Al T Fodmy s Condun el - Bt - Mo ks A0 gt resanecd

Your Brain on Design Patterns

'Hea,d Birgt-—
Design Patterns

Learn why everything
Avoid those your friends know about Factory
embarrassing pattern is
coupling mistakes probably wrong :
+ 19 | 3 ‘, X
) e g A %
Load the patterns
that matter straight

Discover the sécrets into your brain

r e |
of the Patterns Guru @ |) & al }
4 : /4 / 7 +
i - g i ‘ | |
i ‘ See why Jim's
g o, ‘ love life improved
" 4 S B when he cut down
| § his inheritance

. Eric Freeman & Elisabeth Freeman
O RE”—LY with Kathy Sierra & Bert Bates

Find out how
Starbuzz Coffee doubled
their stock price with
the Decorator pattern -

2

Patterns | 3

PATTERNS

A pattern describes...

» a problem which occurs over and over again in our
environment,

P the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it
the same way twice.

(Christopher Alexander)

Design Patterns - Motivation

Design Patterns | 4

® Designing reusable software Is hard
® Novices are overwhelmed

® Experts draw from experience

® Some design solutions reoccur

® Understanding reoccurring solutions has several
facets:

® Know when to apply

® Know how to establish it in a generic way

® Know the consequence (trade-offs)

On Patterns...

Design Patterns | 5

® Patterns are proven
® Proven software practice

® Piece of literature

® Building block, with various abstraction levels:
® Idiom (Coplien, 1991)
® Design Pattern (Gamma et al., 1995)
® Architectural Pattern (Buschmann et al., 1996)

"Agqressive
disreqard for

orig &M&ii&y(’

ldioms

... are not Design Patterns

TECHNISCHE
UNIVERSITAT
DARMSTADT

An idiom Is a low-level pattern specific to a
programming language.

Idioms | 7

e String copy In C

while (*d++=*xs++);

ald ex]

An idiom Is a low-level pattern specific to a
programming language.

Idioms | 8

* [azy Instantiation of Singletons In Java T
(Double-checked Locking ldiom) %
QL
private static Device device = null; =
public static Device instance() { O

if (device == null) { N

synchronized (Device.class) {

1f (device == null) { 6
device = new Device(); Requirés Java
Py o
return device; or Newer to

} work COW@C’C\H"

Template Method

A first Design Pattern

&5 TECHNISCHE
G//=\ UNIVERSITAT
9= DARMSTADT

The Template Method Pattern

Design Patterns | 10

Design Goal

We want to implement an algorithm such that certain
(specific) parts can be adapted / changed later on.

The Template Method Pattern

® Define a skeleton of
an algorithm in an
operation, but defer
some steps to
subclasses

® (Often found In
frameworks and APIs

OutputStream
{abstract}

Design Patterns | 11

write(byte[1b) o-------
write(byte[] b, int off, int len)

write(int)

VAN

FileOutputStream

write(int)

«method»
{ Q

}

for (bytei: b) {
write(i);

}

The Template Method Pattern

Design Patterns | 12

® (Jse the Template Method

Pattern to
® separate variant ana ActraciCiace ethod> ™
' : {abstract} {
INvariant parts

, _ , templateMethod()Ot — - — - .c;.pA();
® avold code duplication in |opA)

opB() opB();
subclasses: the common ﬁt)

behavior Is factored and The template me;c]hct)d
| | ConcreteClass is the method t_ a
localized In a common e e orithm
class OPA() using abstract (and
— concrete) operations.

® control subclass

extensions Besides, abstract

operations (must be
overridden) it is
possible to define hook
operations (may be
overridden).

Architectural Patterns

... are not Design Patterns

&5 TECHNISCHE
G//=\ UNIVERSITAT
9= DARMSTADT

Architectural patterns help to specify the fundamental

structure of a software system, or important parts of
It

Architectural Patterns | 14

e Architectural patterns have an important impact on the
appearance of concrete software architectures

* Define a system’'s global properties, such as ...

* how distributed components cooperate and exchange data
* poundaries for subsystems

* The selection of an architectural pattern is a fundamental

design decision; it governs every development activity that
follows

Architectural patterns help to specify the fundamental
structure of a software system, or important parts of
It

Architectural Patterns | 15

Architectural Patterr;
Often 1t 1s not sufficient to

Pipes and Filters choose just one
* Broker Pattern architectural pattern;
e MVC instead 1t 1s necessary to
e Broker combine several

architectural patterns.

l More on this topic:

Enterprise Application
Design

Example
Model-View Controller (MVC)

Architectural Patterns | 16

The MVC pattern describes a fundamental structural organization
for interactive software systems

» The model contains the core functionality and data
The model Is iIndependent of output representations or input
behavior.

» The user interface is comprised of;

P Views that display information to the user
The view obtains the data from the model.

P Controllers that handle user input
Fach view has a controller. A controller receives input. The
events are then translated to service requests for the model
or the view. All interaction goes through a controller.

Example
Model-View Controller (MVC)

Change Propagation

Architectural Patterns | 17

A change propagation mechanism ensures consistency between
the user interface and the model.

(The change-propagation mechanism Is usually implemented using
the Observer pattern / the Publisher-Subscriber pattern.)

Basic |dea:

A view registers itself with the model.
If the behavior of a controller depends on the state of the model,

the controller registers itself with the change propagation
Mechanism. view

Abstract Factory 438

Singleton 406 M (0) d e I

Template Method 281
Observer 813 —

T ®* 1: change propagation change
Mediator 63 = <

Composite 375

Decorator 156
Strategy 188

Facade 563
Proxy 469
Flyweight 94

Example
Model-View Controller (MVC)

Applicability

Architectural Patterns | 18

Use the MVC pattern for building interactive applications with a
flexible human-computer interface. When. ..

P the same information should be presented differently (in
different windows...)

P the display and behavior of the application must reflect data
Mmanipulations immediately

» porting the Ul (or changing the L&F) should not affect code in
the core of the application

Abstract Factory 438 D a t a

Singleton 406
Template Method 281
Observer 813
Visitor 563
Adapter 531 . .
Medlator < View 1 - - View 2 >
Composite 375
Decorator 156
Strategy 188
Facade 563
Proxy 469
Flyweight 94

isi
pter Mediator Composite
Decorator Strategy Fax
cade Proxy Flywei
lyweight
T —

Example

Model-View Controller (MVC)

Structure

Controller

View

Architectural Patterns | 19

Model

While the Controller and the View are directly coupled with the

Model the

Example
Model-View Controller (MVC)

Liabilities
Architectural Patterns | 20

(Liabilities =dt. Verantwortlichkeiten / Verbindlichkeiten)

» Increased complexity
Using separate view and controller components can increase
complexity without gaining much flexibility

» Potential for excessive number of updates

Not all views are always interested in all changes.

» Intimate connection between view and controller

Architectural Patterns
Recommended Resources

Architectural Patterns | 21

» Pattern-Oriented Software Architecture - A System of
Patterns: Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, Michael Stal; Wiley 1996

» Design Patterns; Gamma et al.

D Patterns of Enterprise Application Architecture; Martin
Fowler; Addison Wesley 2003

Properties of
(Design) Patterns

%574 TECHNISCHE
&)=\ UNIVERSITAT
9> DARMSTADT

Design Patterns - Benefits

Design Patterns | 23

Systematic (software-)development:
® Documenting expert knowledge

® (Jse of generic solutions

® Raising the abstraction level

Design Patterns - Essentials

Design Patterns | 24

to tailor =dt. anpassen

® o pattern has a name

® the problem has to
reoccur to make the |
solution relevant in A Design Pattern

situations outside the describes a solution for

immediate one b .
® |t has to be possible to aproblen in a contexi.

tallor the solution to a
variant of the problem

Essential Parts of Patterns

Design Patterns | 25

1. Pattern Name
A short mnemonic to increase your design vocabulary.

2. Problem
Description when to apply the pattern (conditions that have to be met before it

makes sense to apply the pattern).

3. Solution
The elements that make up the design, their relationships, responsibilities and

collaborations.

4. Consequences
Costs and benefits of applying the pattern. Language and implementation issues
as well as impact on system flexibility, extensibility, or portability.
The goal is to help understand and evaluate a pattern.

Template for Design Patterns

(For Design Patterns as described by Gamma et al., 1995)
Design Patterns | 26

) » Name
' » Intent
» Motivation
2. . .
» Applicability
» Structure
3 » Participants
' » Collaboration
» Implementation
4. » Consequences
. » Known Uses
' » Related Patterns

To document a used design pattern use the participant names of
the pattern to specify a class’ role in the implementation of

patterns.

Design Patterns | 27

Template Method Pattern

AbstractClass
{abstract}

templateMethod() O
OPA()

opB()

ConcreteClass

opA()

opB()

«method»

{

OpA();

opB();

}

abstract -

'Template\‘"

Method
~ concrete

Use of the Template Method
Pattern in Java

OutputStream
{abstract}

write(byte[] b)
> write(byte[] b, int off, int len)
write(int)

class T

class

T A FileOutputStream

write(int)

Levels of Consciousness for a Design Pattern

Design Patterns | 28

1. Innocence

2.Known tricks

3.Competent trick application

4 Applicability & consequences known

5.Wide knowledge of patterns & their interaction
6.Capable of capturing knowledge into literate form

Design Patterns Serve Multiple Purposes

Design Patterns | 29

Elements of Reusable patterns foster reusability
Software

Reuse of Design rather than code
Communication design vocabulary
Documentation information chunks
Teaching passing on culture
Language Design high level languages

Design Patterns | 30

Patterns enable the construction of high-quality software
architectures.

Design Patterns | 31

A software design pattern describes...

» a commonly recurring structure of interacting software
components

» that solve a general software design problem
within a particular context.

Design Patterns - Occurrences

Design Patterns | 32

chess from rules to expertise
literature oldest reference
agriculture wisdom vs. science
architecture pioneering work
software design

' Light from two sides

Place at
Window

Deep terrace

i

Patterns in Architecture

Summary

TECHNISCHE
UNIVERSITAT
DARMSTADT

Goal of the Lecture | 34

The goal of this lecture Is to enable you to
systematically carry out small(er) software
projects that produce quality software.

e |dioms, Design Patterns and Architectural Patterns help you to solve recurring
problems (at different abstraction levels) and to immediately understand the benefits

and tradeoffs.
e Patterns enable you to talk about the design of your application at a higher abstraction

level.

