
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

The Observer
Design Pattern
For details see Gamma et al. in “Design Patterns”

|The GoF Design Patterns

The Observer Design Pattern
Example / Motivation

2

From the “Lexi” Case Study
▶ Presentation components rendering views on the

document should be separated from the core document
data structures
Need to establish communication.

▶ Multiple views on the document should be possible,
even simultaneously
Need to manage updates presenting the document.

|The GoF Design Patterns

The Observer Design Pattern
Example / Motivation

3

|Excursion
Consequences of Object-oriented Programming

Object-oriented programming encourages to break
problems apart into objects that have a small set of
responsibilities (ideally one)… but can collaborate to
accomplish complex tasks.

▶ Advantage: Makes each object easier to implement and
maintain, more reusable, enabling flexible combinations.

▶ Disadvantage: Behavior is distributed across multiple
objects; any change in the state of one object often
affects many others.

4

|The GoF Design Patterns

The Observer Design Pattern
Goal: Communication without Coupling

5

 • Prototypical Application:
Separation of the GUI from underlying data, so that
classes defining application data and presentations can
be reused independently.

▶ Change propagation (of object states) can be hard wired
into objects, but this binds the objects together and
diminishes their flexibility and potential for reuse

▶ A flexible way is needed to allow objects to tell each
other about changes without strongly coupling them

|The GoF Design Patterns

The Observer Design Pattern
Communication without Coupling

6

▶ Task
Decouple a data model (subject) from “parties”
interested in changes of its internal state

▶ Requirements
▶ subject should not know about its observers
▶ identity and number of observers is not

predetermined
▶ novel receivers classes may be added to the system

in the future
▶ polling is inappropriate (too inefficient)

|The GoF Design Patterns

The Observer Design Pattern
Intent

7

Define a one-to-many dependency between
objects so that when an object changes it’s
state, all its dependents are notified and
updated automatically.

Change
propagation

|The GoF Design Patterns
Structure

8

attach(Observer)
detach(Observer)
notify()

Subject

getState()
modifyState()

ConcreteSubject

update()

Observer

update()
ConcreteObserver

«method»
notify()

subject

The Observer Design Pattern

|The GoF Design Patterns
Participants

9

Subject...
▶ knows its observer(s)
▶ provides operations for attaching

and detaching Observer objects
Observer...
▶ defines an updating interface for

supporting notification about changes in a Subject
ConcreteSubject...
▶ stores state of interest to ConcreteObserver objects
▶ sends a notification to its observers upon state change

ConcreteObserver
▶ maintains a reference to a ConcreteSubject object
▶ stores state that should stay consistent with the subject
▶ implements the Observer updating interface

attach(Observer)
detach(Observer)
notify()

Subject

getState()
modifyState()

ConcreteSubject

update()

Observer

update()
ConcreteObserver

«method»
notify()

subject

The Observer Design Pattern

|The GoF Design Patterns
Protocol

10

attach(Observer)
detach(Observer)
notify()

Subject

getState()
modifyState()

ConcreteSubject

update()

Observer

update()
ConcreteObserver

«method»
notify()

subject

List of
Observers

Subject

ObserverA

ObserverB

ObserverC

ObserverD

update()

ObserverE ObserverE
attach() detach()

The Observer Design Pattern

|The GoF Design Patterns
Interaction

11

attach(Observer)
detach(Observer)
notify()

Subject

getState()
modifyState()

ConcreteSubject

update()

Observer

update()
ConcreteObserver

«method»
notify()

subject

List of
Observers

Subject

ObserverA

ObserverB

ObserverC

ObserverD

update()

ObserverE ObserverE
attach() detach()

a:Observer :Subject

update()

setState()
b:Observer

update()

notify()

The Observer Design Pattern

|The GoF Design Patterns

The Observer Design Pattern
Consequences

12

•Abstract coupling between Subject and Observer
•Support for broadcast communication:
•notify doesn't specify its receiver
• the sender doesn't know the (concrete) type of the

receiver

|The GoF Design Patterns

The Observer Design Pattern
Consequences

13

•Unexpected / Uncontrolled updates
•Danger of update cascades to observers and their

dependent objects
•Update sent to all observers, even though some of them

may not be interested in the particular change
•No detail of what changed in the subject; observers may

need to work hard to figure out what changed
•A common update interface for all observers limits the

communication interface: Subject cannot send optional
parameters to Observers

|The GoF Design Patterns

The Observer Design Pattern
“Implementation” - abstract class java.util.Observable

14

▶ addObserver(Observer) Adds an observer to the observer
list

▶ clearChanged() Clears an observable change
▶ countObservers() Counts the number of observers
▶ deleteObserver(Observer) Deletes an observer from the

observer list
▶ deleteObservers() Deletes observers from the observer list
▶ hasChanged() Returns a true Boolean if an observable

change has occurred
▶!notifyObservers() Notifies all observers about an observable

change
▶!notifyObservers(Object) Notifies all observers of the

specified observable change which occurred
▶ setChanged() Sets a flag to note an observable change

|The GoF Design Patterns

The Observer Design Pattern
“Implementation” - interface java.util.Observer

15

▶ public abstract void update(Observable o, Object arg)
This method is called whenever the observed object is
changed. An application calls an observable object's
notifyObservers method to have all the object's
observers notified of the change.
Parameters:
▶ o - the observed object.
▶ arg - an argument passed to the notifyObservers

method.

|The GoF Design Patterns

The Observer Design Pattern
Example - A Counter, a Controller and a View

16

Triggers update

addObserver(Observer)
removeObserver(Observer)
notifyObservers()
...

java.util.Observable

increase()
decrease()

Counter

update(Observable,Object)

Observer

update(Observable,Object)

CounterTextView

«method»
notifyObservers(...)

subject

changeCounter()

CounterButton counter

changeCounter()

IncreaseButton «method»
counter.increase()

|The GoF Design Patterns

The Observer Design Pattern
“Implementation” - class Counter

17

class Counter extends java.util.Observable{
	 public static final String INCREASE = "increase";
	 public static final String DECREASE = "decrease";
	 private int count = 0; private String label;

	 public Counter(String label) { this.label= label; }
	 public String label() { return label; }
	 public int value() { return count; }
	 public String toString(){ return String.valueOf(count); }
	 public void increase() {
	 	 count++;
	 	 setChanged(); notifyObservers(INCREASE);
	 }
	 public void decrease() {
	 	 count--;
	 	 setChanged(); notifyObservers(DECREASE);
} }

|The GoF Design Patterns

The Observer Design Pattern
“Implementation” - class CounterButton

18

abstract class CounterButton extends Button {

	 protected Counter counter;

	 public CounterButton(String buttonName, Counter counter) {
	 	 super(buttonName);
	 	 this.counter = counter;
	 }

	 public boolean action(Event processNow, Object argument) {
	 	 changeCounter();
	 	 return true;
	 }

	 abstract protected void changeCounter();
}

|The GoF Design Patterns

The Observer Design Pattern
“Implementation” - class IncreaseButton

19

abstract class CounterButton extends Button {

	 protected Counter counter;
	 public CounterButton(String buttonName, Counter counter) {
	 	 super(buttonName);
	 	 this.counter = counter;
	 }
	 public boolean action(Event processNow, Object argument) {
	 	 changeCounter();
	 	 return true;
	 }

	 abstract protected void changeCounter();
}

class IncreaseButton extends CounterButton{
	 public IncreaseButton(Counter counter) {
	 	 super("Increase", counter);
	 }
	 protected void changeCounter() { counter.increase(); }
}
class DecreaseButton extends CounterButton{/* correspondingly… */}

|The GoF Design Patterns

class CounterTextView implements Observer{
	 Counter model;
	 public CounterTextView(Counter model) {
	 	 this.model= model;
	 	 model.addObserver(this);
	 }
	 public void paint(Graphics display) {
	 	 display.drawString(
	 	 	 "The value of "+model.label()+" is"+model,1,1
);
	 }

	 public void update(Observable counter, Object argument) {
	 	 repaint();
	 }
}

The Observer Design Pattern
“Implementation” - The View Class

20

|The GoF Design Patterns

The Observer Design Pattern
Implementation Issues - Triggering the Update

21

▶ Methods that change the
state, trigger update
However, if there are several
changes at once, one may not
want each change to trigger an
update. It might be inefficient or
cause too many screen updates
class Counter extends Observable {
! public void increase() {
! ! count++;
! ! setChanged();
! ! notifyObservers();
! }
}

▶ Clients trigger the update
class Counter extends Observable {
! public void increase() {
! ! count++;
! }
}
class Client {
! public void main() {
! ! Counter hits = new Counter();
! ! hits.increase();
! ! hits.increase();
! ! hits.setChanged();
! ! hits.notifyObservers();
! }
}

|The GoF Design Patterns

The Observer Design Pattern - Implementation Issues
Passing Information Along with the Update Notification
- Pull Mode -

22

Observer asks Subject what happened
class Counter extends Observable {
	 private boolean increased = false;
	 boolean isIncreased() { return increased; }
	 void increase() {
	 	 count++;
	 	 increased=true;
	 	 setChanged();
	 	 notifyObservers();
	 }
}
class IncreaseDetector extends Counter implements Observer {
	 void update(Observable subject) {
	 	 if(((Counter)subject).isIncreased()) increase();
	 }
}

|The GoF Design Patterns

The Observer Design Pattern - Implementation Issues
Passing Information Along with the Update Notification
- Push Mode -

23

Parameters are added to update
class Counter extends Observable {
	 void increase() {
	 	 count++;
	 	 setChanged();
	 	 notifyObservers(INCREASE);
	 }
}
class IncreaseDetector extends Counter implements Observer {
	 void update(Observable whatChanged, Object message) {
	 	 if(message.equals(INCREASE)) increase();
	 }
}

|The GoF Design Patterns

class ComplexObservable extends Observable {
	 Object o = new Object();
	 public void trickyChange() {
	 	 o = new Object();
	 	 setChanged();
	 	 notifyObservers();
	 }
}

class SubComplexObservable extends ComplexObservable {
	 Object anotherO = …;
	 public void trickyChange() {
	 	 super.trickyChange(); // causes notification
	 	 anotherO = …;
	 	 setChanged();
	 	 notifyObservers(); // causes another notification
} }

The Observer Design Pattern - Implementation Issues
Ensure that the Subject State is Self-consistent before Notification

24

It’s tricky, because the
subclass overrides this

method and calls it.

|The GoF Design Patterns

The Observer Design Pattern - Implementation Issues
Ensure that the Subject State is Self-consistent before Notification

25

class ComplexObservable extends Observable {
	 Object o = new Object();
	 public /*final*/ void trickyChange() {
	 	 doTrickyChange();
	 	 setChanged();
	 	 notifyObservers();
	 }
	 protected void doTrickyChange(){
	 	 o = new Object();
	 }
}
class SubComplexObservable extends ComplexObservable {
	 Object anotherO = …;
	 protected void doTrickyChange() {
	 	 super.doTrickyChange(); // does not cause notification
	 	 anotherO = …;
 	 setChanged();
 	 notifyObservers();
} }

|The GoF Design Patterns

The Observer Design Pattern - Implementation Issues
Ensure that the Subject State is Self-consistent before Notification

26

class ComplexObservable extends Observable {
	 Object o = new Object();
	 public /*final*/ void trickyChange() {
	 	 doTrickyChange();
	 	 setChanged();
	 	 notifyObservers();
	 }
	 protected void doTrickyChange(){
	 	 o = new Object();
	 }
}

class SubComplexObservable extends ComplexObservable {
	 Object anotherO = …;
	 public void doTrickyChange() {
	 	 super.doTrickyChange();
	 	 anotherO = …;
} }

Application
of the

Template
Method
Pattern

|The GoF Design Patterns

The Observer Design Pattern - Implementation Issues
Specifying Modifications of Interest

27

Improve
updated

efficiency
!

• The normal addObserver(Observer)
method is extended to enable the
specification of the kind of events the
Observer is interested in
•E.g. addObserver(Observer, Aspect)

where Aspect encodes the type of events
the observer is interested in
•When the state of the Subject changes

the Subject sends itself a message
triggerUpdateForEvent(anAspect)

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

28

(Design Pattern Implementation in Java and AspectJ;
Jan Hannemann and Gregor Kiczales; Proceedings of
OOPSLA 2002, ACM Press)

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

29

We want to...
▶ avoid the decision between Push or Pull

mode observers
▶ better support observers interested only in

specific events

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

30

Parts Common to Potential Instantiations of the Pattern
1.! The existence of Subject and Observer roles

(i.e. the fact that some classes act as Observers and some
as Subjects)

2.! Maintenance of a mapping from Subjects to
Observers

3.! The general update logic: Subject changes trigger
Observer updates

Parts Specific to Each Instantiation of the Pattern
4.! Which classes can be Subjects and which can be

Observers
5.! A set of changes of interest on the Subjects that

trigger updates on the Observers
6.! The specific means of updating each kind of Observer

when the update logic requires it

Will be
implemented in a

reusable
ObserverProtocol

aspect.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

31

public abstract aspect ObserverProtocol {

	 // Realization of the Roles of the Observer Design Pattern
	 protected interface Subject { }
	 protected interface Observer { }
	

...
}

The part
common to

instantiations
of the

pattern.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

32
public abstract aspect ObserverProtocol {
	 ...
	 // Mapping and Managing Subjects and Observers
	 private WeakHashMap<Subject, List<Observer>> perSubjectObservers;
	 protected List<Observer> getObservers(Subject s) {
	 	 if (perSubjectObservers == null)
	 	 	 perSubjectObservers = new WeakHashMap<Subject, List<Observer>>();
	 	 List<Observer> observers = perSubjectObservers.get(s);
	 	 if (observers == null) {
	 	 	 observers = new LinkedList<Observer>();
	 	 	 perSubjectObservers.put(s, observers);
	 	 }
	 	 return observers;
	 }
	 public void addObserver(Subject s,Observer o){
	 	 getObservers(s).add(o);
	 }
	 public void removeObserver(Subject s,Observer o){
	 	 getObservers(s).remove(o);
	 }

...
}

The part
common to

instantiations
of the

pattern.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

33

public abstract aspect ObserverProtocol {
	 ...
	 // Notification related functionality
	 abstract protected pointcut subjectChange(Subject s);

	 abstract protected void updateObserver(Subject s, Observer o);

	 after(Subject s): subjectChange(s) {
	 	 Iterator<Observer> iter = getObservers(s).iterator();
	 	 while (iter.hasNext()) {
	 	 	 updateObserver(s, iter.next());
	 	 }	
	 }
}

The part
common to

instantiations
of the

pattern.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Example

34

FigureElement

setX()
setY()
setColor()

Point

setP1()
setP2()
setColor()

Line

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Example

35

Task: Observe Changes of the Color

public aspect ColorObserver extends ObserverProtocol {

	 declare parents: Point implements Subject;
	 declare parents: Line implements Subject;
	 declare parents: Screen implements Observer;

	 protected pointcut subjectChange(Subject s):
	 	 (call(void Point.setColor(Color)) ||
	 	 call(void Line.setColor(Color))) && target(s);

	 protected void updateObserver(Subject s, Observer o) {
	 	 ((Screen)o).display("Color change.");
	 }
}

To create a mapping between an Observer and a Subject:
ColorObserver.aspectOf().addObserver(P, S);

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Assessment

36

▶ Locality
All code that implements the Observer pattern is in the abstract and concrete
observer aspects, none of it is in the participant classes; there is no coupling
between the participants.
Potential changes to each Observer pattern instance are confined to one place.

▶ Reusability
The core pattern code is abstracted and reusable. The implementation of
ObserverProtocol is generalizing the overall pattern behavior. The abstract
aspect can be reused and shared across multiple Observer pattern instances.

▶"Composition transparency
Because a pattern participant’s implementation is not coupled to the pattern,
if a Subject or Observer takes part in multiple observing relationships their
code does not become more complicated and the pattern instances are not
confused.
Each instance of the pattern can be reasoned about independently.

▶!(Un)pluggability
It is possible to switch between using a pattern and not using it in the system.

The Observer
Design Pattern
• Intent

Define a one-to-many dependency between
objects so that when an object changes it’s
state, all its dependents are notified and
updated automatically.

• How it is implemented depends on the available
programming language mechanisms; the
consequences may also change!

