
Dr. Michael Eichberg
Software Technology Group
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

Object-Oriented Thinking

Object-Oriented Thinking
• Class-Responsibility-Collaboration Cards 

(A very first glimpse of object-oriented analysis and
design.)

|Object-Oriented Thinking 3
A First Glimpse on OO Analysis and Design.

• We want to develop a library for representing vector
graphics

• We want to support:
• Squares

• Circles

• Triangles

• Text

• We want to be able to export figures as PDF and SVG
documents

42

|

Class Collaborations

Responsibilities

Object-Oriented Thinking

‣ <collaborator A>
‣ <collaborator B>
‣ ...

<classname>

‣ <responsibility A>
‣ <responsibility B>
‣ ...

4
A Class-Responsibility-Collaboration (CRC) Card

other classes

short eng.
sentences

|Object-Oriented Thinking

Class-Responsibility-Collaboration (CRC) cards help to
discuss object-oriented designs.

•The class name of an object creates a vocabulary for
discussing the design; you should spent enough time to
find the right words
•Responsibilities identify problems to be solved; a

responsibility serves as a handle for discussing potential
solutions; they are expressed using short verb phrases
each containing an active verb
•Collaborators are the objects which will send or

receive messages in the course of satisfying
responsibilities

5

|Object-Oriented Thinking 6
First, we have to identify potential classes.

• We want to develop a library for representing vector
graphics

• We want to support:
• Squares

• Circles

• Triangles

• Text

• We want to be able to export figures as PDF and SVG
documents

42

|Object-Oriented Thinking 7
First, we identify potential classes.

• We want to develop a library for representing vector
graphics

• We want to support:
• Squares

• Circles

• Triangles
• Text
• We want to be able to export figures as PDF and

SVG documents
We start by

identifying nouns.

42

|Object-Oriented Thinking
For each potential class, we create a CRC card.

8

Class Collaborations

Responsibilities

Text

Class Collaborations

Responsibilities

Square

Class Collaborations

Responsibilities

Circle

Class Collaborations

Responsibilities

Triangle

“Setup”

|Object-Oriented Thinking
For each potential class, we create a CRC card.

9

Class Collaborations

Responsibilities

‣Figure

Class Collaborations

Responsibilities

‣SVGDocument

Class Collaborations

Responsibilities

‣PDFDocument

“Setup”

|Object-Oriented Thinking

Class Collaborations

Responsibilities

Text

We then identify responsibilities and collaborators.
10

Class Collaborations

Responsibilities

Text

‣ Maintain the text

Class Collaborations

Responsibilities

Square

‣ Maintain the
square’s data

Class Collaborations

Responsibilities

Circle

‣ Maintain the
circle’s data

Class Collaborations

Responsibilities

Triangle

‣ Maintain the
triangle’s data

|Object-Oriented Thinking

Class Collaborations

Responsibilities

‣PDFDocument
Class Collaborations

Responsibilities

‣Figure

We then identify responsibilities and collaborators.
11

Class Collaborations

Responsibilities

‣Figure

‣ Maintain a list of
“shapes”

Class Collaborations

Responsibilities

‣SVGDocument

‣ Create a “.svg” file

Class Collaborations

Responsibilities

‣PDFDocument

‣ Create a “.pdf”
file

|Object-Oriented Thinking
We incrementally refine our cards.

12

Class Collaborations

Responsibilities

Figure

‣ Maintain a list of
“shapes”

Class Collaborations

Responsibilities

SVGDocument

‣ Create ...
‣ Save a figure to a

“.svg” file

Class Collaborations

Responsibilities

PDFDocument

‣ Create ...
‣ Save a figure to a

“.pdf” file

|Object-Oriented Thinking
We incrementally refine our cards.

13

Class Collaborations

Responsibilities

Figure

‣ Maintain a list of
“shapes”

Class Collaborations

Responsibilities

SVGDocument
SVGDocBuilder

‣ Save a figure to a
“.svg” file

Class Collaborations

Responsibilities

PDFDocument
PDFDocBuilder

‣ Save a figure to a
“.pdf” file

|Object-Oriented Thinking
We then identify responsibilities and collaborators.

14

Class Collaborations

Responsibilities

‣ Text
‣ Circle
‣ Triangle
‣ Square

Figure

‣ Maintain a list of
“shapes”

Class Collaborations

Responsibilities

‣ Figure
‣ Text
‣ Circle
‣ Triangle
‣ Square

SVGDocBuilder

‣ Save a figure to a
“.svg” file

Class Collaborations

Responsibilities

‣ Figure
‣ Text
‣ Circle
‣ Triangle
‣ Square

PDFDocBuilder

‣ Save a figure to a
“.pdf” file

How do we
support this?

|Object-Oriented Thinking
We then identify responsibilities and collaborators.

15

Class Collaborations

Responsibilities

Square

‣ Maintain the
square’s data

Class Collaborations

Responsibilities

Circle

‣ Maintain the
circle’s data

Class Collaborations

Responsibilities

Triangle

‣ Maintain the
triangle’s data

Class Collaborations

Responsibilities

Text

‣ Maintain the text

|Object-Oriented Thinking

Class Collaborations

Responsibilities

N/AShape 

‣ Abstract over
shapes

We then identify responsibilities and collaborators.
16

Class Collaborations

Responsibilities

Square

‣ Maintain the
square’s data

Class Collaborations

Responsibilities

Circle

‣ Maintain the
circle’s data

Class Collaborations

Responsibilities

Triangle

‣ Maintain the
triangle’s data

Class Collaborations

Responsibilities

Text

‣ Maintain the text

Specific for class-based
languages

|Object-Oriented Thinking

Class Collaborations

Responsibilities

N/AShape 

‣ Abstract over
shapes

We then identify responsibilities and collaborators.
17

Class Collaborations

Responsibilities

‣ ColorSquare

‣ Maintain the
square’s data

Class Collaborations

Responsibilities

‣ ColorCircle

‣ Maintain the
circle’s data

Class Collaborations

Responsibilities

‣ ColorTriangle

‣ Maintain the
triangle’s data

Class Collaborations

Responsibilities

‣ ColorText

‣ Maintain the text

Class Collaborations

Responsibilities

N/AColor  

‣ Converts between
color spaces

|

“
Object-Oriented Thinking

A Laboratory For Teaching OO-Thinking  
Proceedings of OOPSLA ’89; ACM Press

Kent Beck, Ward Cunningham

18

We stress the importance of creating objects not
to meet mythical future needs, but only under the
demands of the moment.

|

• We want to support further shapes:
• Stars

• Bubbles

• Arrows

• Bézier curves

• ...

• We want to support further file formats:
• BMP

• JPEG

• DXF

• ...

Object-Oriented Thinking
Evolving the Application

19

|

• If we follow the chosen path – i.e, each XDocBuilder
collaborates with all shapes – we end up with this:

Object-Oriented Thinking
Evolving the Application

20

PDFDocBuilder

SVGDocBuilder

DXFDocBuilder

JPEGDocBuilder

BMPDocBuilder

Triangle

Circle

Square

Bézier curve

|

• If we follow the chosen path - i.e, each ...DocBuilder
collaborates with all shapes - we end up with this:

Object-Oriented Thinking
Evolving the Application

21

PDFDocBuilder

SVGDocBuilder

DXFDocBuilder

JPEGDocBuilder

BMPDocBuilder

Triangle

Circle

Square

Bézier curveConsequences:
- Adding a new shape requires updating all

DocBuilders
- Supporting a new file format requires

knowledge of all shapes

|Object-Oriented Thinking
An Example SVG file

22

 2 [...]!
 3 <svg version="1.1" viewBox="183 216 143 148" width="143pt" height="148pt">!
 4 [...]!
11 <g> !
12 <rect x="185" y="218" width="72" height="69" fill="#00009f"/>!
13 <rect x="185" y="218" width="72" height="69" stroke="black" .../>!
14 <ellipse cx="270" cy="327.5" rx="36.000072" ry="34.500084" fill="#2d4141"/>!
15 <ellipse cx="270" cy="327.5" rx="36.000072" ry="34.500084" stroke="black" .../>!
16 <path d="M 252 241 L 288 310 L 324 241 Z" fill="#ffeb00"/>!
17 <path d="M 252 241 L 288 310 L 324 241 Z" stroke="black" .../>!
18 </g>!
19 </svg>

No direct
support for
triangles.

A circle is
represented using

an ellipse.
Each ...DocBuilder will

contain quite some
domain logic.

|Object-Oriented Thinking
We then identify responsibilities and collaborators.

23

Class Collaborations

Responsibilities

‣ Text
‣ Circle
‣ Triangle
‣ Square

Figure

‣ Maintain a list of
“shapes”

Class Collaborations

Responsibilities

‣ Figure
‣ Text
‣ Circle
‣ Triangle
‣ Square

SVGDocBuilder

‣ Save a figure to a
“.svg” file

Class Collaborations

Responsibilities

‣ Figure
‣ Text
‣ Circle
‣ Triangle
‣ Square

PDFDocBuilder

‣ Save a figure to a
“.pdf” file

This solution does not
facilitate software

evolution!
!

We need to think again
about the collaborations

and responsibilities!

|

Class Collaborations

Responsibilities

Object-Oriented Thinking

‣ If this list gets too long, it’s probably
time to split up the class.
‣ If you have cyclic collaboration

dependencies its time to think about
introducing abstractions.

Names do matter!

‣ If this list gets too long, it’s probably
time to split up the class.
‣ The responsibilities a class has

should be related.

There are some things to consider.
24

|Object-Oriented Thinking
A new class with new responsibilities and collaborators.

25

Class Collaborations

Responsibilities

‣ Color
‣ Canvas

Triangle

‣ Maintain the
triangle’s data

‣ draw itself

Class Collaborations

Responsibilities

‣ Color
‣ Canvas

Square

‣ Maintain the
square’s data

‣ draw itself

Class Collaborations

Responsibilities

‣ Color
‣ Canvas

Circle

‣ Maintain the
circle’s data

‣ draw itself

Class Collaborations

Responsibilities

‣ Color
‣ Canvas

Text

‣ Maintain the text
‣ draw itself on a

canvas … using
primitive
shapes

Class Collaborations

Responsibilities

‣ ColorCanvas

‣ draw text, lines,
bézier curves,
ellipses and points

… identification of a
new artificial class
(w.r.t. the domain

description)

|Object-Oriented Thinking
We then identify responsibilities and collaborators.

26

Class Collaborations

Responsibilities

‣ Text
‣ Circle
‣ Triangle
‣ Square

Figure

‣ Maintain a list of
“shapes”

Class Collaborations

Responsibilities

‣ CanvasSVGDocBuilder

‣ Save figure as
“.svg” file

‣ act as a Canvas

Class Collaborations

Responsibilities

‣ CanvasPDFDocBuilder

‣ Save figure as
“.pdf” file

‣ act as a Canvas
Class Collaborations

Responsibilities

‣ ColorCanvas

‣ draw text, lines,
bézier curves,
ellipses and points

|

• If we follow the new path - i.e, each XDocBuilder is
basically a canvas - we end up with this:

Object-Oriented Thinking
Evolving the Application

27

PDFDocBuilder

SVGDocBuilder

DXFDocBuilder

JPEGDocBuilder

BMPDocBuilder

Triangle

Circle

Square

Bézier curveCanvas

|Object-Oriented Thinking
“Background Literature”

28

• The International
Conference on Object
Oriented Programming,
Systems, Languages and
Applications (OOPSLA); ACM
Press, 1989

A Laboratory For Teaching
Object-Oriented Thinking

Kent Beck, Apple Computer, Inc.
Ward Cunningham, Wyatt Software Services, Inc.

It is difficult to introduce both novice and
experienced procedural programmers to the
anthropomorphic perspective necessary for
object-oriented design. We introduce CRC
cards, which characterize objects by class name,
responsibilities, and collaborators, as a way of
giving learners a direct experience of objects.
We have found this approach successful in
teaching novice programmers the concepts of
objects, and in introducing experienced
programmers to complicated existing designs.

1. Problem

The most difficult problem in teaching object-
oriented programming is getting the learner to
give up the global knowledge of control that is
possible with procedural programs, and rely on
the local knowledge of objects to accomplish
their tasks. Novice designs are littered with
regressions to global thinking: gratuitous global
variables, unnecessary pointers, and
inappropriate reliance on the implementation of
other objects.

Because learning about objects requires such a
shift in overall approach, teaching objects
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/ooO1 $1.50

reduces to teaching the design of objects. We
focus on design whether we are teaching basic
concepts to novices or the subtleties of a
complicated design to experienced object
programmers.

Rather than try to make object design as much
like procedural design as possible, we have found
that the most effective way of teaching the
idiomatic way of thinking with objects is to
immerse the learner in the “object-ness” of the
material. To do this we must remove as much
familiar material as possible, expecting that
details such as syntax and programming
environment operation will be picked up quickly
enough once the fundamentals have been
thoroughly understood.

It is in this context that we will describe our
perspective on object design, its concrete
manifestation, CRC (for Class, Responsibility,
and Collaboration) cards, and our experience
using these cards to teach both the fundamentals
and subtleties of thinking with objects.

2. Perspective

Procedural designs can be characterized at an
abstract level as having processes, data flows,
and data storestlr, regardless of implementation
language or operating environment. We wished
to come up with a similar set of fundamental

October 1-6, 1989 OOPSLA ‘89 Proceedings 1

Object-Oriented Thinking
• The inheritance relationship

|Object-Oriented Thinking 30

A common pitfall in object-oriented design is the
inheritance relation.

•Now let’s assume we want to further evolve our library and
add support for Rectangles…

42

|Object-Oriented Thinking 31

A common pitfall in object-oriented design is the
inheritance relation.

•Now let’s assume we want to further evolve our library and
add support for Rectangles…
•Should Rectangle inherit from Square?
•Should Square inherit from Rectangle?
• Is there some other solution?

42

|Object-Oriented Thinking 32

A common pitfall in object-oriented design is the
inheritance relation.

•Now let’s assume we want to further evolve our library and
add support for Rectangles…
•Should Rectangle inherit from Square?
•Should Square inherit from Rectangle?
• Is there some other solution?

42
A first test:  

“Is a Rectangle a Square?”

|Object-Oriented Thinking 33

A common pitfall in object-oriented design is the
inheritance relation.

•Now let’s assume we want to further evolve our library and
add support for Rectangles…
•Should Rectangle inherit from Square?
•Should Square inherit from Rectangle?
• Is there some other solution?

42
A first test:  

“Is a Rectangle a Square?”

No.

|Object-Oriented Thinking 34

A common pitfall in object-oriented design is the
inheritance relation.

•Now let’s assume we want to further evolve our library and
add support for Rectangles…
•Should Rectangle inherit from Square?
•Should Square inherit from Rectangle?
• Is there some other solution?

42A first test:  
“Is a Square a Rectangle”?

Well… yes, but … how
about a Square’s behavior?

|Object-Oriented Thinking 35

A common pitfall in object-oriented design is the
inheritance relation.

•Now let’s assume we want to further evolve our library and
add support for Rectangles…
•Should Rectangle inherit from Square?
•Should Square inherit from Rectangle?
• Is there some other solution?

42A first test:  
“Is a Square a Rectangle”?

Well… yes, but … how
about a Square’s behavior?

Object-Oriented Thinking
• Summary

|Object-Oriented Design

A large number of Design Heuristics and Design
Principles exists that help you to design “better”
programs.

• Low Coupling
•High Cohesion
•Single Responsibility Principle
•Don’t repeat yourself
•No cyclic dependencies
• Liskov Substitution Principle
•Open-Closed Principle
• ...

37

|Goal of the Lecture 38

The goal of this lecture is to enable you to
systematically carry out small(er) software

projects that produce well-designed software.

- Identifying and (re-)distributing responsibilities among objects / classes is
one of the major tasks when designing and evolving object-oriented
programs.

- Having classes with well identified responsibilities facilitates the
comprehension, maintenance and evolution of the software.

