
Dr. Michael Eichberg 
Software Engineering 
Department of Computer Science 
Technische Universität Darmstadt

Introduction to Software Engineering

What is  
Software Engineering?



What is Software?



|

“
What is Software?

New Oxford American Dictionary; 2005

“Software” - The programs and other 
operating information used by a computer.

3



|

“
What is Software?

Software Engineering Eighth Edition; Pearson Education, 
2007

I. Sommerville

[...] software is not just the programs but also all 
associated documentation and configuration 
data that is needed to make these programs 
operate correctly.

4



|

“
What is Software?

The Software Engineering Process: Definition and Scope; 
ACM SIGSOFT Software Engineering Notes, Vol. 14, Issue 4, 
1989

W. S. Humphrey

The term software refers to a program and all of 
the associated information and materials needed 
to support its… 

installation,  
operation,  
repair and  
enhancement.

5



|What is Software?

•An executable program and its data 
•Configuration files 
•System documentation  

(e.g. architectural and analysis model, a design document,...) 
•User documentation 
•A website  

(To inform about issues, download updates,...) 

• ...

6
Software is more than just code.



Properties of Software



|Properties of Software

“To Code is to Design”...

• No “real” physical borders 
• Software doesn’t wear out / there are no spare-parts  

Nevertheless, Software has to be constantly updated to cope with 
changing environments; otherwise the software will become 
obsolete (software aging). 
• Software is hard to “measure”  

How to define the quality of software?  
Are those things (e.g. the lines of code) that can be measured 
correlated to the quality? How can we measure progress?

8

Software has unique properties when compared to any 
hardware.



|Properties of Software

The borders are blurring (e.g. Enterprise Resource Planning (ERP) 
software is often customized to match the workflows in a 
particular company).

•Generic products  
(in the past referred to as shrink-wrapped software) 
e.g. Microsoft Word, Open Office, Acrobat,… 
to shrink-wrap =dt. einschweißen; in Schrumpffolie verpacken 
•Customized products  

(individual software, build-to-order software) 
e.g. TUCaN (Campusnet), an Air Traffic Control System, … 

• Open-Source products

9
Several types of software can be distinguished.



|

“
Properties of Software

Lehrbuch der Softwaretechnik; Spektrum Akademischer 
Verlag, 1996

Balzert

10

Hardware lifetime

Application software lifetime

System software lifetime

time



What is  
Software Engineering?



|

“
What is Engineering?

New Oxford American Dictionary; 2005

(Hardware) “Engineering” 
The branch of science and technology concerned 
with the design, building, and use of engines, 
machines, and structures.

12



|What is Software Engineering?

• The costs for hardware were falling, but the costs for 
software were rising significantly 
•Software projects were not in-time, were not in-budget and 

contained too many errors 
• Technological issues 
• Lack of suitable programming languages 
• Lack of methods 
• Lack of tool support 
• ...

13

The term “Software Crisis” was coined in the 60’s and 
refers to multiple problems.



|What is Software Engineering?

The term “Software Engineering” was coined at the 
end of the sixties and is often attributed to F.L. Bauer.

14

(Software Engineering ~ dt. Softwaretechnik / Softwaretechnologie)

The NATO Software Engineering Conference 
(Garmisch, Germany, 7-11 Oct 1968) 

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/N1968/index.html



|

“
What is Software Engineering?

The Software Engineering Process: Definition and Scope; 
ACM SIGSOFT Software Engineering Notes, Vol. 14, Issue 4, 
1989

W. S. Humphrey

15

Software Engineering refers to the disciplined 
application of engineering, scientific, and 
mathematical principles and methods to the 
economical production of quality software. 
[…] quality refers to the degree to which a product 
meets its users’ needs.



|

“
What is Software Engineering?

IEEE Standard Glossary of Software Engineering Terminology 
Std. 610.12-1990, 1990

IEEE Standards Board

16

“Software Engineering” 
(1) The application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software; that 
is, the application of engineering to software.  
(2) The study of approaches as in (1). 



|

“
What is Software Engineering?

http://www.softeng.uwaterloo.ca/ (since 2007)
University of Waterloo

17

“Software Engineering” 
Software engineering is a systematic and 
disciplined approach to developing software. It 
applies both computer science and engineering 
principles and practices to the creation, 
operation, and maintenance of software 
systems. 
 
[Computer Science is concerned with the theories and methods that 
underlie computers and software systems, software engineering is 
concerned with the practical problems of producing software.]



|

“
What is Software Engineering?

Duden Informatik; 1993

18

[…] Der Begriff Software-Engineering steht für die 
Auffassung, dass die Erstellung, Anpassung und 
Wartung von Programmsystemen kein 
“künstlerischer”, sondern vorwiegend ein 
ingenieurmäßig verlaufender  Prozess ist...



|

“
What is Software Engineering? Is the Software Crisis still with us?

CHAOS Summary 2009
Standish Group, Boston, Massachusetts, April 23, 2009

19

This year's [2009] results show a marked decrease 
in project success rates, with 32% of all projects 
succeeding which are delivered on time, on 
budget, with required features and functions.  
44% were challenged which are late, over budget, 
and/or with less than the required features and 
functions and 24% failed which are cancelled prior 
to completion or delivered and never used. 
These numbers represent a downtick in the 
success rates from the previous study, as well as a 
significant increase in the number of failures[...]

New Standish Group report shows more project failing and less successful 
projects.



|What is Software Engineering? Is the Software Crisis still with us?

However, other complex and innovative hardware systems are 
also often behind schedule (e.g. the Airbus A380, the Boeing 
Dreamliner, the white iPhone).  
Engineering Software is about getting the design right 
and less about building the 42nd A380.

• The requirements and system dependencies are not well-
defined  
•Changing the requirements during the development is 

much, much easier for software than for hardware;  
(Software has to accommodate for hardware “issues”.) 
• Lack of tools, methods, education, planning, ...

20

Software projects fail due to several different reasons. 
(A software project is considered to have failed as soon as the 
project is not on-time or is not in-budget).



|

“
What is Software Engineering? Is the Software Crisis still with us?

CHAOS Manifesto 2011
Standish Group, Boston, Massachusetts, March 3, 2011

21

In the just-released report, CHAOS Manifesto 
2011, The Standish Group's shows a marked 
increase in project success rates from 2008 to 
2010. These numbers represent an uptick in the 
success rates from the previous study, as well as a 
decrease in the number of failures. […]  
This year's results represent the highest success 
rate in the history of the CHAOS Research.  
[…] "We clearly are entering a new understanding 
of why projects succeed or fail." This 
understanding is spelled out in the CHAOS 
Manifesto research report.

New Standish Group report shows more projects are successful and less projects 
failing.



|What is Software Engineering?
Software engineering encompasses several areas.

22

• Software Requirements  
The requirements define what the system is expected to do. 

• Software Design 
How the system is designed. 

• Software Testing  
The systematic identification (and elimination) of errors. 

• Software Maintenance 

• Software Configuration Management  
The management of different versions and configuration of a software. 

• Software Engineering Process  
Definition and improvement of software development processes. 

• Software Engineering Tools and Methods 

• Software Quality 

• Software Ethics



|What is Software Engineering?
Software engineering encompasses several areas.

23

• Software Requirements  
The requirements define what the systems is expected to do. 

• Software Design 
How the system is designed. 

• Software Testing  
The systematic elimination of errors. 

• Software Maintenance 

• Software Configuration Management  
The management of different versions and configuration of a software. 

• Software Engineering Process  
Definition and improvement of software development processes. 

• Software Engineering Tools and Methods 

• Software Quality

Primary focus 
of this lecture.



|What is Software Engineering?

We will not talk about systems engineering in this lecture.

Systems Engineering ↔ Software Engineering

•System related activities, such as defining the overall 
system objectives and requirements, allocating system 
functions between hardware and software, defining 
hardware / software interfaces, full system acceptance 
tests are essential, but they are part of systems 
engineering 
•Software Engineering is a part of systems engineering

24



What is  
Software Engineering?
• A Critical View of Software Engineering



|

“
A Critical View of Software Engineering

IEEE Software, July/August 2009 (vol. 26 no. 4) 
Freely available at:  
http://www2.computer.org/cms/Computer.org/ComputingNow/homepage/
2009/0709/rW_SO_Viewpoints.pdf

Tom DeMarco

26

96 I E E E  S O F T W A R E    P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y  0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0  ©  2 0 0 9  I E E E

W e’re now just past the 40th anniver-
sary of the NATO Conference on 
Software Engineering in Garmisch, 
Germany, where the discipline of soft-
ware engineering was first proposed. 
Because some of my early work be-

came part of that new discipline, this seems like 
an appropriate moment for reassessment.

My early metrics book, Con-
trolling Software Projects: Man-
agement, Measurement, and 
Estimation (Prentice Hall/Your-
don Press, 1982), played a role 
in the way many budding soft-
ware engineers quantified work 
and planned their projects. In 
my reflective mood, I’m wonder-
ing, was its advice correct at the 
time, is it still relevant, and do I 

still believe that metrics are a must for any suc-
cessful software development effort? My answers 
are no, no, and no.

The book for me is a curious combination of 
generally true things written on every page but 
combined into an overall message that’s wrong. 
It’s as though the book’s young author had never 
met a metric he didn’t like. The book’s deep mes-
sage seems to be, metrics are good, more would 
be better, and most would be best. Today we all 
understand that software metrics cost money and 
time and must be used with careful moderation. 
In addition, software development is inherently 
different from a natural science such as physics, 
and its metrics are accordingly much less precise 
in capturing the things they set out to describe. 
They must be taken with a grain of salt, rather 
than trusted without reservation.

Compelled to Control
The book’s most quoted line is its first sentence: 
“You can’t control what you can’t measure.” This 
line contains a real truth, but I’ve become increas-
ingly uncomfortable with my use of it. Implicit in 
the quote (and indeed in the book’s title) is that 
control is an important aspect, maybe the most im-
portant, of any software project. But it isn’t. Many 
projects have proceeded without much control but 
managed to produce wonderful products such as 
GoogleEarth or Wikipedia.

To understand control’s real role, you need to 
distinguish between two drastically different kinds 
of projects:

Project A will eventually cost about a mil- 
lion dollars and produce value of around $1.1 
million.
Project B will eventually cost about a million  
dollars and produce value of more than $50 
million.

What’s immediately apparent is that control is re-
ally important for Project A but almost not at all 
important for Project B. This leads us to the odd 
conclusion that strict control is something that 
matters a lot on relatively useless projects and 
much less on useful projects. It suggests that the 
more you focus on control, the more likely you’re 
working on a project that’s striving to deliver 
something of relatively minor value.

To my mind, the question that’s much more im-
portant than how to control a software project is, 
why on earth are we doing so many projects that 
deliver such marginal value?

Tom DeMarco

Software Engineering:  
An Idea Whose Time Has Come and Gone?

C o n t a c t  E d i t o r :  D e n n i s  T a y l o r   d t a y l o r @ c o m p u t e r . o r g

viewpoints

Continued on p. 95

We welcome 
your letters. 
Send them to 
software@
computer.org. 
Include your full 
name, title,  
affiliation, and 
email address.  
Letters are edited 
for clarity  
and space. 2009

1982

http://www2.computer.org/cms/Computer.org/ComputingNow/homepage/2009/0709/rW_SO_Viewpoints.pdf


|

“
A Critical View of Software Engineering

Controlling Software Projects: Management, Measurement, and 
Estimation; Prentice Hall/Yourdon Press, 1982

Tom DeMarco

27

“You can’t control what you can’t measure.” 1982
Read: “You can’t control 

software projects without 
taking extensive 

quantitative data..…”



|

“
A Critical View of Software Engineering

Software Engineering 
An Idea Whose Time Has Come and Gone?

Tom DeMarco

28

“[…] My early metrics book,[…]. I’m 
wondering, was its advice correct at the 
time, is it still relevant, and do I still believe 
that metrics are a must for any successful 
software development effort?  
My answers are no, no, and no. 

The book for me is a curious combination 
of generally true things written on every 
page but combined into an overall 
message that’s wrong.[…]”

2009

1982

http://search3.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Tom%20DeMarco


|

“
A Critical View of Software Engineering

Software Engineering 
An Idea Whose Time Has Come and Gone?

Tom DeMarco

29

“[…] the more you focus on control, the 
more likely you’re working on a project 
that’s striving to deliver something of 
relatively minor value. 
[...] we need to reduce our expectations for 
exactly how much we’re going to be able to 
control […].” 

2009

1982

E.g., the value of a 
project where the goal 
is to “just” replace a 
legacy technology is 
often very limited.

http://search3.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Tom%20DeMarco


|

“
A Critical View of Software Engineering

Software Engineering 
An Idea Whose Time Has Come and Gone?

Tom DeMarco

30

“So, how do you manage a project without 
controlling it? Well, you manage the people 
and control the time and money. 
[...] Your job is to go about the project 
incrementally, adding pieces to the whole 
in the order of their relative value, and 
doing integration and documentation and 
acceptance testing incrementally as you 
go.” 

2009

1982

http://search3.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Tom%20DeMarco


|

“
A Critical View of Software Engineering

Software Engineering 
An Idea Whose Time Has Come and Gone?

Tom DeMarco

31

“I still believe it makes excellent sense to 
engineer software. But that isn’t exactly what 
software engineering has come to mean.  

The term encompasses a specific set of disciplines 
including…  
• defined process,  
• inspections and walkthroughs,  
• requirements engineering,  
• traceability matrices,  
• metrics,  
• precise quality control,  
• rigorous planning and tracking, and  
• coding and documentation standards.” 2009

1982

http://search3.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Tom%20DeMarco


|

“
A Critical View of Software Engineering

Software Engineering 
An Idea Whose Time Has Come and Gone?

Tom DeMarco

32

[...] Software development is and always 
will be somewhat experimental.  
The actual software construction isn’t 
necessarily experimental, but its conception 
is. 

2009

1982

http://search3.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Tom%20DeMarco


Fifteen Principles of Software 
Engineering



|

“
Software Quality

Fifteen Principles of Software Engineering; IEEE Software 
1994

Alan M. Davis

34

1. Make quality number 1 
2. High-quality software is possible 
3. Give products to customers early 
4. Determine the problem before writing the 

requirements (...before starting to code) 
5. Evaluate design alternatives 
6. Use an appropriate process model 
7. Use different languages for different phases 
8. ...

1994



|

“
Software Quality

Fifteen Principles of Software Engineering; IEEE Software 
1994

Alan M. Davis

35

7. ... 
8. Minimize intellectual distance 
9. Put technology before tools  

(Before you use a tool, you should understand and be able to 
follow appropriate software technique.) 

10.Get it right before you make it faster 
11. Inspect code  

(… Sometimes code inspections are claimed to be more effective 
than testing …) 

12. ...

The distance between the 
real-wold problem and the 

computerized solution to the 
problem..



|

“
Software Quality

Fifteen Principles of Software Engineering; IEEE Software 
1994

Alan M. Davis

36

11. ... 
12.Good management is more important than 

good technology  
(… Management style must be adapted to the situation…) 

13.People are the key to success 
14.Follow with care 

(Just because everybody is doing it, does not make it right for 
you…) 

15.Take responsibility



|Goal of the Lecture 37

The goal of this lecture is to enable you to 
systematically carry out small(er) commercial 

or open-source projects. 

Engineering software is hard; this lecture teaches you why 
and (to some extent) how to tackle common problems. 

Software engineering is about designing software and not 
about building software. 


