Dr. Michael Eichberg

Software Engineering
Department of Computer Science
Technische Universitat Darmstadt

Introduction to Software Engineering

Software Testing & Unit Tests

e Resources

e lan Sommerville
Software Engineering 8th Edition
Addison Wesley 2007
* Robert v. Binder
Testing Object-Oriented Systems - Models, Patterns, and
Tools
Addison Wesley 2000
o Peter Liggesmeyer
Software-Qualitat
Spektrum 2002

/i TECHNISCHE
UNIVERSITAT
DARMSTADT

Software Testing

2 TECHNISCHE
UNIVERSITAT
DARMSTADT

Verification & Validation | 3

'y Validation
“Are we building the right product?”

Verification

“Are we building the product right?”

lan Sommerville
Software Engineering 8th Edition; Addison Wesley 2007

Two complementary approaches for verification and
validation (V&V) can be distinguished.

e Software Inspections or
Peer Reviews
(Static Technique)
“Software inspections” can be
done at all stages of the
process.

e Software Testing
(Dynamic Technique)

Verification & Validation | 4

' | Inspections

‘ Software \

Requirements
Specification

High-level
Design

—)‘ ‘ Prototyp ‘ \

Formal
Specification

Y Y ¥ ¥

Detailed
Design

Y

‘ Program ‘

Program «“‘
Testing |

Software inspections check the correspondence
between a program and its specification.

Software Inspections - Static Technique | 5

* Some techniques

* Program inspections
The goal 1s to find program defects, standards violations,
poor code rather than to consider broader design issues; It 1s
dsually carried out by a team and the members
systematically analyze the code.
An inspection is usually driven by checklists.
(Studies have shown that an inspection of roughly 100LoC
takes about one person-day of effort.)

Software inspections check the correspondence
between a program and its specification.

Software Inspections - Static Technique | 6

* Some techniques

* Automated source code analysis
Includes - among others - control flow analysis, data use /

flow analysis, information flow analysis and path analysis.
Static analyses draw attention to anomalies.

Software Inspections - Lightweight Static Software Analysis |

o060 FindBugs™ - Find Bugs in Java Programs -
203 @ £3 http://findbugs.sourceforge.net/index.htm| & Q~ Googl) [
S 62) K9 O hp://findbug ge.net/ oogle L¥
ﬂ\
“

F 1ndBu S

because it's easy

Docs and Info
Demo and data
Users and supporters
FindBugs blog

Fact sheet

Manual

Manual(ja/ H A{5)
FAQ

Bug descriptions
Mailing lists
Documents and Publications
Links

| FindBugs™ - Find Bugs in Java Programs

This is the web page for FindBugs, a program which uses static analysis to look for bugs in
Java code. Itis free software, distributed under the terms of the Lesser GNU Public
License. The name FindBugs™ and the FindBugs logo are trademarked by The University
of Maryland. As of July, 2008, FindBugs has been downloaded more than 700,000 times.

FindBugs requires JRE (or JDK) 1.5.0 or later to run. However, it can analyze programs
compiled for any version of Java. The current version of FindBugs is 1.3.9, released on
20:11:47 EDT, 21 August, 2009. We are very interested in getting feedback on how to
improve FindBugs.

Changes | Talks | Papers | Sponsors | Support

New

Downloads JavaOne talk: Slides from my JavaOne talk, Mistakes That Matter.

FindBugs Swag e FindBugs community review: We are previewing FindBugs community review, in
which anyone can review issues in open source projects (i.e., mark issues as "must

Development f.'g, ic(::;c rrélostly harmless"), and those reviews are automatically shared with other

Open bugs '

R ing b

sz,?n{t;ﬁfin:gs This is a pre-beta release, not ready for deployment. The implementation will be

Dev team undergoing significant changes before general availability. |

API [no frames] X

Change log Initially, we are posting results for: v

7

Software Inspections - Lightweight Static Software Analysis | 8

New
| Open , .
| ES~ B J(Lv i‘;v Q- Qv J e (Open With p T 5 [&2CVS Reposit... %5 Debug »
= outli| = B Open Type Hierarchy F4 im Return.java Im Xor.java Im SelectionAnalyzer.ja 23""\.__»_”40 =8
& Show In ®W p | = current.tokile().seuke(); "
> 15 Other Projects] = currentResult.getLocation().toFile().£edRE();
» 4= sCM Copy $8C
>j—'_,:-Jcrstos 55 Copy Qualified Name .length] = wsRoot. findMember(output).getLocation().toFile().£etRt
b 315 >BAT3 -
>i;§,‘10pal {2 Paste 38V ¢ and tell him to look in all positions where binaries
vig >BAT2XML ¥ Delete [elected type belongs to
>' >BAT2XML BAT3XML [cage.st.informatik I- new URLClassLoader(classPathURLs);
v&’—v‘uj-?%TZXMLPIugm [cage.st.informatik.tu-d Build Path > tResource(fgnName.replace('.","'/") + ".class");
St src -
> i$} de.tud.bat.io.xml.plugin SO;.II'CE X385 > tion f the handLi £ the cl ‘h
» F1 de.tud.bat.io.xml.plugin.confi . R r C9eT p Pption from the handling o e class pa
>“Ba e-tud.bat fo m pugfn con 9“ml Eiacio .38 rom the handling of file / path locations and from the readClassF
143 de.tud.bat.io.xml.plugin.function . .
. . Exception from the read(ClassFile method
vd['?Eg.tud.bat.no.xml.plugm.helper R\ii |mport___
J4 Aninput.java 1.3 =
/5
» [J) ByteArrayStorage.java 1.2 e Export... tatus. ERROR) ;
!
» [H de.tud.bat.io.xml.plugin.job References > an error occured
» i# de.tud.bat.io.xml.plugin.popup.acti Declarations [+ -
> J'}a de.tud.bat.io.xml.plugin.preference
b =), Plug-in Dependencies Find Bugs > -~ Find Bugs "
b = JRE System Library [JVM 1.5] fgnName + ".",
b o META-INF «» Refresh F5 ¥ Clear Bug Markers
(&7} build.properties 1.3 Assign Working Sets... . ERROR,
% plugin.xml 1.11 l;}(ugm .getDefaul t().getBundle().getSymbolicName(),
>4 ._—,) Columbus Run As [’ _ _ ' . o
pd l__,) Eclipse Debug As > during loading the binary file for " + fgnName + ".", i
>4 ._—, 1 Magellan C A
pJ ._-;) Sextant overage AS >
» 451 DS@BA0809 Validate .
Team I :
(= B) y<«/» Compare With > — B <>l
J o* de.tud.bat.io.xml.plugin.helper....nalyi Replace With > —Iﬁ J J & E’;_ @ @ 7#~ # 0_]

N

— Restore from Local History...

Properties A

[2XMLF

N

[Ev B o | G 357 O Qv | &

W | @™ |P 48

48

Software Inspections - Lightweight Static Software Analysis |

1) | &~ §lvxo v Do

¥ [2CVS Reposit... %5 Debug »

P 15 >BAT2XML BAT3XML [cage.st.inf
V{i;-'ﬁl-BATZXMLPIugin [cage.st.informa
¥ 5§ src
> if} de.tud.bat.io.xml.plugin
> i1} de.tud.bat.io.xml.plugin.co
> B de.tud.bat.io.xml.plugin.fui
¥ [} de.tud.bat.io.xml.plugin.he
» [J} Aninput.java 1.3
» [J) ByteArrayStorage.java 1.
A SelectionAnalyzer.java 1
» [H de.tud.bat.io.xml.plugin.jok
» [H de.tud.bat.io.xml.plugin.po
» [H de.tud.bat.io.xml.plugin.p
b =), Plug-in Dependencies
> =), JRE System Library [JVM 1.5]
b 55 META-INF
E-‘B build.properties 1.3
E& plugin.xml 1.11
15 Columbus

;

m& Hier} % Anq o= outli| = B /m BasicBlock.java (m ExecutionGraph.java (m Return.java (m Xor.java |/‘m SelectionAnalyzer.ja 83__”40 = q)
= v elseclassPathUKLsLl_l = current.toF1le().£eURE();]
:ciﬁ"ome" Projects o classPathURLs[1] = currentResult.getlLocation().toFile().£eURL();
5 SCM }
» 15 CTfDSO08 W classPathURLs[classPath.length] = wsRoot.findMember(output).getLocation().toFile().£eURE
» 15 >BAT3
» 15 Opal // create a class loader and tell him to look in all positions where binaries
v 15 >BAT2XML

Prescanning... (found 0, checking org.eclipse.ui.ISharedimages)

D;

tth

2/

ns and from the readClassF

) Always run in background

Yl

}
}

(cancel) (Details>>) (RuninBackground)

IStatus. ERROR,

BAT2XMLPlugin. getDefault().getBundle().getSymbolicName(),

Status. 0K,

"Error during loading the binary file for " + fgnName + ".",

e),
OxFFFF).open();

classFileURL = binary;

/.

</»(

) Il

&

de.tud.bat.io.xml.plugin.helper....nalyzer.java - BAT2XMLPlugin/src Jl 148M of 246M |ﬁ J

|sElelwio

9

Software Inspections - Lightweight Static Software Analysis | 10

M0 Java - BAT¢

J 3'@15]“'#'0

Jal/ 10/ X l

:
n/src/de

vl
7

Qv | BEHGCY @ P E LG e oD ¥ [2CVS Reposit... %5 Debug »

]] Hier\| & Ant| | o= outli| = B /@ FlowGraphjob.java |fm ToFlowGraph.java |(m BAT2XMLPlugin.java |m SelectionAnalyzer.ja 23___»41 =8
i _r Wi clLassPFathURLS| 1] = current.tokF1le().£6bKE(),; - =
BAT2XMLPlugin G @ N B elce L Q) Qs =]
v §ffsrc & classPathURLs[1] = currentResult.getLocation().toFile().£eHRE();
¥ [1} de.tud.bat.io.xml.plugin }
» i1} BAT2XMLPlugin.java 1.3 & classPathURLs[classPath.length] = wsRoot. findMember(output).getLocation().toFile().£ebRE
I ﬂa de.tud.bat.io.xml.plugin.configuration
» [#} de.tud.bat.io.xml.plugin.function // create a class loader and tell him to look in all positions where| binaries
¥ I de.tud.bat.io.xml.plugin.helper // of the project the selected type belongs to
» [J} Aninput.java 1.3 {2 ClassLoader classLoader = new URLClassLoader(classPathURLs); -
» [J) ByteArrayStorage.java 1.2 binary = classLoader.getResource(fgnName.replace('.","'/"') + ".class");
1 SelectionAnalyzer.java 1.6 .
v [de.tud.bat.io.xml.plugin.job } catch (Exception e) {)) m
» LI} FlowGraphjob.java 1.7 // can be JavaModelException from the handling of the class path
o . . . // I0Exception from the handling of file / path locations and from the readClassF
v ﬂa de.tud.bat.io.xml.plugin.popup.actions . .
) // ClassNotFoundException from the readClassFile method
» \J) ToFlowGraph.java 1.11
I DBTOXMLAFtion.java }.11 // log the error e
> m de.tud.bat.io.xml.plugin.preferences BAT2XMLPlugin. log(e, IStatus.ERROR);
b =, Plug-in Dependencies I = =3 y<l>l
b = JRE System Library [JVM 1.5) = = = = = = = =
b {5 META-INF [l Problems | @ Javadoc | [, Declaration | 8. Bug Explorer 53 \4} Bug User Annotations | €] Error Log | =8
S oarpens AT
ugin. . -
g VI;"&BATZXMLPIugin (5) [cage.st.informatik.tu-darmstadt.de]
v #Classloaders should only be created inside doPrivileged block (1)
#de.tud.bat.io.xml.plugin.helper.SeIectionAnaIyzer.analyze(lSelection) creates a java.net.URLClassLoader classloader, which shoul¢
v #Dead store to local variable (1)
Dead store to dotExit
v #Field names should start with a lower case letter (2)
#The field name de.tud.bat.io.xml.plugin.popup.actions.ToFlowGraph.PreTransformXSLFile doesn't start with a lower case letter
#The field name de.tud.bat.io.xml.plugin.popup.actions.ToFlowGraph.ToDotXSLFile doesn't start with a lower case letter
v 3 Write to static field from instance method (1)
#Write to static field de.tud.bat.io.xml.plugin.BAT2XMLPlugin.plugin from instance method new de.tud.bat.io.xml.plugin.BAT2XML
I = -3 Jai»
J o* de.tud.bat.io.xml.plugin.helper.SelectionAnalyzer.java - BAT2XMLPlugin/src H 146M of P47M |ﬁ J P
7

Software Inspections - Lightweight Static Software Analysis | 11

DON'T SHOOT THE MESSENGER

PMD is a source code analyzer. It finds common programming flaws like unused variables, empty catch blocks, unnecessary object creation, and
so forth. It supports Java, JavaScript, XML, XSL.
Additionally it includes CPD, the copy-paste-detector. CPD finds duplicated code in Java, C, C++, C#, PHP, Ruby, Fortran, JavaScript.

Latest version
Latest version
Get Involved
5.2.1 (3rd November 2014)
Plugins

e Release Notes

e Download (Sourcecode, Documentation)
Recent Announcements

e Online Documentation
Next development version

Previous versions

Copyright © PMD. All Rights Reserved. sourceforge

Software Inspections - Lightweight Static Software Analysis | 12

Checkstyle 6.1

Last Published: 2014-11-13 | Version: 6.1

About
Checkstyle
Release Notes
Documentation
¥ Configuration
Property Types
¥ Running
Ant Task
Command Line
Available Checks
v Standard Checks
Annotations
Block Checks
Class Design
Coding
Duplicate Code
Headers
Imports
Javadoc Comments
Metrics
Miscellaneous
Modifiers
Naming Conventions
Regexp
Size Violations
Whitespace
v Extending Checkstyle
Writing checks
Writing filters
Writing listeners
v Style Configurations
Google's Style
Sun's Style
Developers
Javadoc
Project Page @
Contributing

Project Documentation

Overview

Checkstyle is a development tool to help programmers write Java code that
adheres to a coding standard. It automates the process of checking Java code to
spare humans of this boring (but important) task. This makes it ideal for projects
that want to enforce a coding standard.

Checkstyle is highly configurable and can be made to support almost any coding
standard. An example configuration files are supplied supporting the Sun Code
Conventions @, Google Java Style =.

A good example of a report that can be produced using Checkstyle and Maven @
can be seen here @.

Important Development Changes

As of September 2013, the Checkstyle project is using GitHub for hosting the
following:

e Source code repository @ - replacing the Mercurial repository on
SourceForge.

e Issue management @ - replacing the Bugs/Feature/Patches on
SourceForge. All new issues should be raised at GitHub, and pull requests
are now the preferred way to submit patches.

SourceForge will still be used for website hosting and binary hosting for
downloads.

Software inspections check the correspondence
between a program and its specification.

Software Inspections - Static Technique | 13

* Some techniques

e Formal verification

Formal verification can guarantee the absence of specific bugs. E.g., to guarantee that
a program does not contain dead locks, race conditions or buffer overflows.

Software inspections check the correspondence
between a program and its specification.

Software Inspections - Static Technique | 14

Software inspections do not demonstrate that

the software is useful.

Software testing refers to running an implementation
of the software with test data to discover program
defects.

Software Testing - Dynamic Testing | 15

* Validation testing
INntended to show that the software 1s what the customer

Wants
(Basically, there should be a test case for every reqguirement.)

* Defect testing
INntended to reveal defects

* (Defect) Testing iIs...
e fault directed when the intent 1s to reveal faults

* conformance directed when the intent is to demonstrate
conformance to required capabilities

e

No Strict Separation

Test plans set out the testing schedule and procedures;
they establish standards for the testing process.
They evolve during the development process.

Software Testing | 16

* V&V IS expensive; sometimes half of the development
budget Is spent on V&V

Requirements > Acceptance >4 Acceptance
specification test plan test
S eséiitfar{]ion > integration] > integration
P test plan test
/ Sub-system Sub-system
%yesstierrr]\ >| integration] > integration
J test plan test

i Module and
Ddeetsai”f,d > unit code and
0 test

—

The scope of a test is the collection of software
components to be verified.

Software Testing - Scope of Tests | 17

e Unit tests
(dt. Modultest)

Comprises a relatively small executable; e.g., a single
object

* Integration test

Complete (sub)system. Interfaces among units are
exercised to show that the units are collectively operable

e System test
A complete integrated application. Categorized by the kind

of conformance they seek to establish: functional,
performance, stress or load

Software Testing | 18

{ [Testing can only show the presence of errors, not
their absence. =

E. Dijkstra

The design of tests is a multi-step process.

Software Testing - Test Design | 19

1.ldentify, model and analyze the responsibilities of
the system under test (SUT)

(E.g., use pre- and postconditions identified in use cases as input.)

2. Design test cases based on this external perspective

3. Add test cases based on code analysis, suspicions, and
neuristics

4. Develop expected results for each test case or choose an
approach to evaluate the pass / no pass status of each
test case

After the test design a test automation system (TAS)
needs to be developed.

Software Testing - Test Automation System | 20

A test automation system will. ..

o start the implementation under test (IUT)
* set Up Its environment

* bring It to the required pretest state

* apply the test inputs

* evaluate the resulting output and state

The goal of the test execution Is to establish that the
Implementation under test (IUT) is minimally operational
by exercising the interfaces between its parts.

Software Testing - Goal of Test Execution | 21

To establish the goal...

1. execute the test suite: the result of each test Is evaluated
as pass Or N0 pass

2. Use a coverage tool to Instrument the implementation
under test; rerun the test suite and evaluate the reported
coverage

3.1f necessary, develop additional tests to exercise
uncovered code

4. stop testing when the test goal Is met; all tests pass
(“Exhaustive” testing Is generally not possible!)

Test Point
(dt. Testdatum (Prufpunkt))

Test Point | 22

o A test point Is a specific value for...
* test case Input
* 5 state variable

* The test point is selected from a domain; the domain Is the
set of values that input or state variables may take

e Heuristics for test point selection:
* Equivalence Classes
e Boundary Value Analysis
* Speclal Values Testing

Test Case
(dt. Testfall)

Software Testing - Terminology | 23

® Test cases specify:
* pretest state of the implementation under test (IUT)
e test Inputs / conditions
* expected results

Test Suite

Software Testing - Terminology | 24

e A test sulte 1s a collection of test cases

Test Run
(dt. Testlauf)

Software Testing - Terminology | 25

e A test run Is the execution (with results) of a test suite

e The IUT produces actual results when a test case Is applied
to It; a test whose actual results are the same as the
expected results 1s sald to pass

Test Driver
&
Test Harness/Automated Test Framework

Software Testing - Terminology | 26

o Test driver Is a class or utility program that applies test
cases toan IUT

e [est harness Is a system of test drivers and other tools to
support test execution

Failures, Errors & Bugs

Fallure =dt. Defekt(, Fehlschlag)
Fault =dt. Mangel

Error =at. Fenhler
Software Testing - Terminology | 27

e A faitlure 1s the (manifested) inability of a system or
component to perform a required function within specified

[imits
* A software fault is missing or incorrect code
* An error IS a human action that produces a software fault

Test Plan

Software Testing - Terminology | 28

e A document prepared for human use that explains a
testing approach:

* the work plan,
* general procedures,
* explanation of the test design,

Software Testing - Terminology | 29

Testing must be based on a fault model.

Because the number of tests is infinite, we have to make
(for practical purposes) an assumption about where faults
are likely to be found!

Software Testing - Terminology | 30

Testing must be based on a fault model.

Two general fault models and corresponding testing
strategles exist:

- Conformance-directed testing

- Fault-directed testing

Testing has to be efficient.

Developing a Test Plan

Software Testing - Test Plan | 31

Let's assume that we are going to write a tool for veritying
Java code. In particular, we would like to assert that specific
Nt based calculations always satisfies the stated assertions.

public int doCalc(int i, int j) {
System.out.println(i*7);
if (1 <0 || > 10 || <0 |] > 100)
throw new IllegalArgumentException();

return i * j; // assert(i * j in [0,1000])

Developing a Test Plan

Software Testing - Test Plan | 32

To represent Java Int values, we are using the following classes
and map the calculations to the respective methods.

/** Representation of a primitive Java int value. */ z
abstract class IntValue { z

Viuto)
* Calculates the result of multiplying a and b. The result is as pgé

cise as possible given
* the available information. If the result is either a or b, thegespective object is
* returned. 4

*/
public abstract IntValue mul(IntValue);

}

/** Represents a specific but unknown Java int value. */
class AnInt extends IntValue {

public IntValue mul(IntValue) {..}
}

/** Represents a value that is in the range [lb,ub]; however, the specific
class Range extends IntValue {

public final int 1b;
public final int ub;

public Range(int , int ub) {
this.1lb = ;
this.ub = ;
}
public IntValue mul(IntValue) {.}

Developing a Test Plan

Software Testing - Test Plan | 33

® Devise a test plan for a program that:
® rcads three integer values,
® which are Iinterpreted as the length of the sides of a triangle

® [he program states whether the triangle Is

® scalene (dt. schief), ‘

® |sosceles (dt. gleichschenklig), or A

® cquilateral (dt. gleichseitig) A

® A valid triangle must meet two conditions:

® No side may have a length of zero

® [Fach side must be shorter than the sum of all sides divided
by 2

An Implementation of a Triangle

Software Testing - Devising a Test Plan | 34

class Polygon extends Figure {

Figure abstract void draw(..);
abstract float area();

¥

class Triangle extends Polygon {

public Triangle(...);
LineSegment Polygon public void setA(LineSegment a);
public void setB(LineSegment b);

public void setC(LineSegment c);
public boolean isIsosceles();

Triangle Pentagon Hexagon public boolean 1isScalene();
public boolean isEquilateral();

Test Descriptions

Software Testing - Devising a Test Plan | 35

Description A C Expected Output
Valid scalene triangle 5 3 4 Scalene
Valid isosceles triangle 3 3 4 Isosceles
Valid equilateral triangle 3 3 3 Equilateral
First perm. of two equal sides 50 50 25 Isosceles
(Permutations of previous test case) Isosceles
One side zero 1000 | 1000 0 Invalid
First perm. of two equal sides 10 5 5 Invalid
Sec. perm. of two equal sides 5 10 5 Invalid
Third perm. of two equal sides 5 5 10 Invalid
Three sides greater than zero, sum of two smallest less than 3 5 > Invalid
the largest

Test Descriptions

Software Testing - Devising a Test Plan | 36

Description A C Expected Output
(Permutations of previous test case) Invalid
All sides zero 0 0 0 Invalid
One side equals the sum of the other 12 5 7 Invalid
(Permutations of previous test case) Invalid
Three sides at maximum possible value MAX | MAX | MAX Equilateral
Two sides at maximum possible value MAX | MAX 1 Isosceles
One side at maximum value 1 1 MAX Invalid
+ Further OO related tests w.r.t. the type hierarchy etc.
(e.q. are the line segments connected.)

Coverage
Coverage =dt. Abdeckung

Software Testing - Code Coverage | 37

* The completeness of a test suite w.r.t. a particular test
case design method i1s measured by coverage

e Coverage Is the percentage of elements required by a test
strategy

The Control-flow Graph of a Method

Software Testing - Code Coverage | 38

static void doThat(int v, boolean b) { PJ()CJCi

if (v > 100 & b)|

1f (v > 100 && b) {
print("1f");

,Bra nch

h

else { print("if") print("else™)
print("else");

h

return; return

A Node consists of a sequence of

statements without any branches
} in or out (except of the last
statement).

A branch describes a possible
control-flow.

Common Method Scope Code Coverage Models

Software Testing - Code Coverage | 39

Statement Coverage is achieved when all statements in a
method have been executed at least once

Branch Coverage Is achieved when every path from a
node Is executed at least once by a test suite; compouna
predicates are treated as a single statement

Simple Condition Coverage requires that each simple

condition be evaluated as true and false at least once
(Hence, It does not require testing all possible branches.)

Condition Coverage =
Simple Condition Coverage + Branch Coverage

Multiple-condition Coverage requires that all true-false
combinations of simple conditions be exercised at least
once

branch =dt. Verzweigung; condition =dt. Bedingung;
branch coverage =dt. Zwelguberdeckung
simple condition coverage =dt. einfache Bedingungsuberdeckung

Conditions - Exemplified

Software Testing - Code Coverage | 40

static void doThat(int v, boolean b) {

simPle/ atomic condition(s)

1f Qv > 100 &&

¥

——

print("i1f");

else {

¥

print("else™);

H
b) {

Here, "v > 100" is
the first condition
and "b" is the

second condition.

In Java, simple/
atomic conditions
are separated by
T&&TTET or

“11"/"|" operators.

Compound Predicates - Exemplified

Software Testing - Code Coverage | 41

static void doThat(int v, boolean b) {

(comPouncl) Preclicate (expression)

Here, "v > 100 && b" Is
called a predicate resp. a

1f (v > 100 && b) { compound predicate. This
. e — compound predicate
print("if"); consists of two “simple”
} conditions.

else { | o
print("else");
¥

Branch Coverage Exemplified

Software Testing - Code Coverage | 42

100% Branch Coverage
v =90, b = true
v = 101, b = true

Node
static void doThat(int v, boolean b) { if (v > 100 8 b)
if (v > 100 8 b) { » “false’/BranCh
print("if"); ‘k
) \
else { print("if™) print('else™)
print("else"); ' |
} \ /
} N

return }

Simple Condition Coverage Exemplified

Software Testing - Code Coverage | 43

100% Simple Condition Coverage

Recall: The condition is an expression that evaluates to true or

false. l.e., an expression such as !b (not b) is the condition. a~= true) b ~ False) C= Fa SC

a= Fa!se, b = true, c = false

a= Fa!se, b = ?alse) Cc = true
static void doThat(
boolean a,

boolean b, if (@&) | (c&b) I (b & a))
boolean ¢) { \

“true’
if (@&)| (c&b) I (b&a){
print("1f");
¥ print("if™) print('else™)
else { '
print("else");
}

¥ return

(Simple) Condition Coverage Exemplified

static void doThat(
boolean a,
boolean b,
boolean c) {

1f ((a && ¢) Il (c
print("if");

ks

else {
print("else");

}

Software Testing - Code Coverage | 44

100% (Simple) Condition Coverage

a=true, c=true (b Is not relevant)

a= Faise, C = true, b = true

a= False) C= ?alse, b = false

&& b) Il (b && a)) {

Recall, if we have shortcut evaluation,
simple condition coverage implies
branch coverage!

1f ((a & c) Il (c&b) Il (b & a))

"true’, \false"

print("1f") print("else")

N/

return

Basic Block Coverage

Software Testing - Code Coverage | 45

* A basic block is a sequence of consecutive instructions In
which flow of control enters at the beginning and leaves at
the end without halt or possibility of branching except at
the end

e Basic block coverage is achieved If all basic blocks of a

method are executed

(% Sometimes "statement coverage" is used as a synonym for "basic block coverage"
- however, we do not use these terms synonymously.)
(Basic blocks are sometimes called segments.)

Basic Block Coverage Exemplified

Software Testing - Code Coverage | 46

100% Basic Block Coverage
v =90
v = 101, b = true

0 | if(100 >= V) |gr

static void-doThat(int v, boelean b) {

1f (v > 100 && b) {
print("1f");

¥ 1
else {
print("else");
ks
} 2 | retumn This graph is the \

that compilers
typically generate
when compiling
3 | Exit the source code
shown on the left
hand side.

l control-flow graph

static void doThat(int v,boolean b)

Control-flow Graph

Software Testing - Code Coverage | 47

static void doThis(boolean a, boolean b) { 0 | if(a)
1f (a) {
print("A");
}
if (b) { f153
print("B");
} /
} 1 | if(b)

Statement Coverage TRUE
= a2 A
Basic Block Coverage TRUE o % £ 1 a | print")
S O ~
Qo2
(Simple) TRUE 1 552
Condition Coverage FALSE g al 5
©2c
FALSE ® 3 2 | return | &
Branch Coverage . 9
TRUE l
Here, condition coverage can N came aavers a” -

also be achieved using other
test cases.(E.g. a=false; b=true
and a=true; b=false.)

3 | Exit

Possible Pathsl

static void doThis(boolean a,boolean b)

Control-flow Graph

Software Testing - Code Coverage | 48

static void doThis(boolean a, boolean b) {

1f (a && b) {

print("A && B");

Statement Coverage

Basic Block Coverage

(Simple)
Condition Coverage

Branch Coverage
(w.r.t. the given source
code)

Multiple Condition
Coverage

a b
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE FALSE
FALSE /
TRUE TRUE
FALSE /
TRUE TRUE
TRUE FALSE
FALSE /

3A3IYDY 0]

abesono)

S1S9] JO JaqUINN |[eWIUlp

Frage

Antwort

3 | if(b) ~

v

1 return

l

2 | Exit

static void doThis(boolean a,boolean

print("A && B'') ‘

Wirde im Falle von Condition Coverage nicht
auch "true, true" und "false, false" ausreichen?

Da im Ausdruck "a && b", “b” nur evaluiert wird
wenn a wabhr ist (Short-cut Evaluation von "&&"
- siehe Graph) - ist "false / false" keine
hilfreiche Belegung der Parameter.

Frage / Antwort:
Waére der Code:

if (a) {
if (b)
print(“A && B”)
else
print(“Hello!”)
}

return;

dann ware fir “Statement
Coverage”folgende Testfalle
notwendig: a=true; b=false und
a=true; b=true. (Ebenso fir
Basic Block Coverage)

Control-flow Graph

Software Testing - Code Coverage | 49

static void doThis(boolean a, boolean b) { 0 | if(a) |
1f Ca 11 by { We have achieved , f
print("A or B");
1 100% statement

} coverage, though we

have never evaluated
the condition b.

Statement Coverage print(*'A or B")
Basic Block Coverage o= \
2 =
Y 3
FALSE TRUE S =5
(Simple) D> =
Condition Coverage PEIE s g Q 5 2
TRUE / ©2c
o B
Branch Coverage TRUE /)
(w.r.t. the source
code) FALSE FALSE |
3 | Exit

static void doThis(boolean a,boolean b)

static long process(java.lang.String[] args) | 50

static long process(String[] args) throws IllegalArgumentException {

Stack values = new Stack(); Calculating the resulk O“F
for (int 1 =0; 1 < args.length; 1++) { an arithmetic expression
String arg = args[i]; . y .
try § in postfix notation:

long value = Long.parselLong(arg);
values.push(value);

} catch (NumberFormatException nfe) { 45+ 63 4 xx=7
// there 1s no method to test if a string is aAUMPErT: ..

1f (values.size() > 1) {
long r = values.pop();
long 1 = values.pop();
if (arg.equals("+")) {
values.push(l + r);
continue;

}
if (arg.equals("*")) {
values.push(l * r);

continue;
ks
hy
throw new IllegalArgumentException("Too few operands or operator unknown.");
ks
ks
1f (values.size() == 1) return values.pop();

else throw new IllegalArgumentException("Too few (@) or too many (>1) operands.");

Basic Blocks of 1ong process(Str‘lng[] args)

0 | stack.<init>()

stack = new demo.SimpleCalculator.Stack

;

P14 = O(0<0,pB5s11) |
1 | pl7 = args.length
if(pl7 > pl4)

2 | p20 = args[pl4]

'

stack.push(p23)

long p23 = java.lang.Long.parseLong(p20)

<4

java.lang.NumberFormatException

int p30 = stack.size()
if(1 >= p30)

long p40 = stack.pop()
long p43 = stack.pop()
p47 = p20.equals("'+")
if(p47)

p50 = p20.equals('*")
if(p50)

12 | stack.push(p58)

long p58 = p43 + p40

y

static long process(java.lang.String[] args) | 51

Frage
Wie kommt dieser Graph zustande?

Antwort

Dieser Graph ist das Ergebnis der Reprasentation des
kompilierten Programms. Wenn Sie Details dazu
interessieren, dann suchen sie am Besten nach "Static
Single Assignment".

Ein Einstieg wére:

http://en.wikipedia.org/wiki/
Static_single_assignment_form

p7Gasstack.size()

151 if(p70 12

long p54 = p43 * p40
10 | stack.push(p54) 6

p36 = new lllegalArgumentException
p36.<init>("...")
throw p36

16

e

11

int p65 = pld + 1

A
72 = new lllegalArgumentException
E72.<init>('...")g ° P 17 | K6 = stack.pop()
throw p72 peturn p76

7 | Exit |

static long process(java.lang.String[] args) | 52

stack = new demo.SimpleCalculator.Stack

stack.<init>()

pld = ©(0<0,p65«11)
1 | pl7 = args.length
if(pl7 > pl4)

2 | p20 = args[pl4]

long p23 = java.lang.Long.parseLong(p20)
stack.push(p23)

4

java.lang.NumberFormatException

int p30 = stack.size()

if(1 >= p30)
RN

Software Testing - Code Coverage | 53

‘ ‘ Do not use a code coverage model as a test
model.

Do not rely on code coverage models to devise
test suites. Test from responsibility models and
use coverage reports to analyze test suite
adequacy.

Covering some aspect of a method [...] is never a
guarantee of bug-free software.

Robert V. Bender

Testing Object-Oriented Systems
Addison Wesley 2000

Steve Cornett

http://www.bullseye.com/coverage.html

e Recommended Reading

Software Testing - Code Coverage | 54

O OO Code Coverage Analysis

0

Code Coverage Analysis

This paper gives a complete description of code coverage analysis (test coverage analysis),
a software testing technique.

By Steve Cornett. Copyright © Bullseye Testing Technology 1996-2008. All rights reserved.
Redistribution in whole or in part is prohibited without permission.

A Do not copy any part of this
document without permission.

Contents

Introduction
Structural Testing and Functional Testin
The Premise
Basic Metrics
o Statement Coverage

Decision Coverage
Condition Coverage
Multiple Condition Coverage
Condition/Decision Coverage
Modified Condition/Decision Coverage

o Path Coverage
e Other Metrics

o Function Coverage
o Call Coverage
o Linear Code Sequence and Jump (LCSAJ) Coverage
o Data Flow Coverage
o Object Code Branch Coverage
o Loop Coverage
o
o
o
o

o 0 0 0 0

Race Coverage
Relational Operator Coverage
Weak Mutation Coverage
Table Coverage
Comparing Metrics
Coverage Goal for Release
Intermediate Coverage Goals
Summary
References

Limits of Testing

2 TECHNISCHE
UNIVERSITAT
DARMSTADT

Limits of Testing

The number of input and output combinations for trivial programs Is
already (very) large.
Software Testing - Limits | 56

Assume that we limit Points to integers between 1 and 10;
there are 107 Possible ways to draw (a sinée) ine.

Since a triangle has three lines we have 10% x 10% x 10*

Possible inl:)uts of three lines (including invalid
combinations).

We can never test all inPutsJ states, or outl:)uts.

Limits of Testing
Branching and result in a very large number of
unigue execution sequences. Simple iteration increases the number

of possible sequences to astronomical proportions.
Software Testing - Limits | 57

for (
|Oop . int 1 = @,
header 1 < n;
++1
)

{
if (a.get(i) == b.get(i))

x[1] = x[1]+100;
else

x[1] = x[1] 7/ 2;

Limits of Testing

Branching and dynamic binding result in a very large number of

unigue execution seguences.

T we count entry-exit

paths without regarding

iteration there are only

three paths:

1.loop header, exit

2.loop header, cond.,
+100

3.loop header, cond., /2

Software Testing - Limits | 58

Limits of Testing
Branching and dynamic binding result in a very large number of
unigue execution seqguences. Simple iteration increases the number

of possible sequences to astronomical proportions.
Software Testing - Limits | 59

Number of Number of

iterations paths

1 21+ 1 =3
2 22+ 1=5
3 20+ 1 =9
10 1.025

20 1.048.577

1. Path

Limits of Testing
Branching and dynamic binding result in a very large number of
unigue execution seqguences. Simple iteration increases the number

of possible sequences to astronomical proportions.
Software Testing - Limits | 60

Number of Number of

iterations paths

1 21+ 1 =3
2 22+ 1=5
3 20+ 1 =9
10 1.025

20 1.048.577

Limits of Testing
Branching and dynamic binding result in a very large number of
unigue execution seqguences. Simple iteration increases the number

of possible sequences to astronomical proportions.
Software Testing - Limits | 61

Number of Number of

iterations paths

1 21+ 1 =3
2 22+ 1=5
3 20+ 1 =9
10 1.025

20 1.048.577

3. Path

Limits of Testing
Branching and dynamic binding result in a very large number of
unigue execution seqguences. Simple iteration increases the number

of possible sequences to astronomical proportions.
Software Testing - Limits | 62

Number of Number of

iterations paths

1 21+ 1 =3
2 22+ 1=5
3 20+ 1 =9
10 1.025

20 1.048.577

4 Path

Limits of Testing
Branching and dynamic binding result in a very large number of
unigue execution seqguences. Simple iteration increases the number

of possible sequences to astronomical proportions.
Software Testing - Limits | 63

Number of Number of

iterations paths

loop
1 21 +1=3 header
2 22+ 1=5
3 20+ 1 =9
10 1.025
20 1.048.577

The ability of code to hide faults from a test suite is
called its fault sensitivity.

Software Testing - Limits | 64

Coincidental correctness is obtained when buggg code can
Proclucc correct results For some inPuts.

]

.'Z‘;.g. assuming that the correct cocle woulcl be:

X = X+X
but you wrote
X = XX

if x = 2 is tested the code hides the bug: it Pro&uces a correct

result from buggg code. However, this bug IS easilg identified.

Implementing Tests

* A Very First Glimpse

static long process(java.lang.String[] args) | 66

static long process(String[] args) throws IllegalArgumentException {

Stack values = new Stack(); Calculating the resulk O“F
for (int 1 =0; 1 < args.length; 1++) { an arithmetic expression
String arg = args[i]; . y .
try § in postfix notation:

long value = Long.parselLong(arg);
values.push(value);

} catch (NumberFormatException nfe) { 45+ 63 4 xx=7
// there 1s no method to test if a string is aAUMPErT: ..

1f (values.size() > 1) {
long r = values.pop();
long 1 = values.pop();
if (arg.equals("+")) {
values.push(l + r);
continue;

}
if (arg.equals("*")) {
values.push(l * r);

continue;
ks
hy
throw new IllegalArgumentException("Too few operands or operator unknown.");
ks
ks
1f (values.size() == 1) return values.pop();

else throw new IllegalArgumentException("Too few (@) or too many (>1) operands.");

A Test Plan That Achieves Basic Block Coverage

static long process(java.lang.String[] args) | 67

Description

Expected Output

Test calculation of the correct
result

{II4II’ II5II’ II+II’ II7II’ II*II}

63

Test that too few operands
leads to the corresponding
exception

{II4II’ II5II’ II+II’ II*II}

Exception: "Too few operands
or operator unknown."

Test that an illegal operator /
operand throws the
corresponding exception

{II4II’ II5327h662hll’ II*II}

Exception: "Too few operands
or operator unknown."

Test that an expression throws

Exception: "Too few (0) or too

the corresponding exception {} many (>1) operands left."
Test that too few operates o
leads to the corresponding {"4", "5"} Exception: "Too few (0) or too

exception

many (>1) operands left."

A Test Plan That Achieves Basic Block Coverage

static long process(java.lang.String[] args) | 68

Description

Expected Output

Test calculation of the correct
result

{II4II’ II5II’ II+II’ II7II’ II*II}

63

Test that too few operands
leads to the corresponding
exception

{II4II’ II5II’ II+II’ II*II}

Exception: "Too few operands
or operator unknown."

ISRUCIERIIEEE |S this test plan “sufficient™? | Eup———"

operand throws
corresponding exc&sere

erator unknown."

Test that an expression throws

Exception: "Too few (0) or too

the corresponding exception {} many (>1) operands left."
Test that too few operates o
leads to the corresponding {"4", "5"} Exception: "Too few (0) or too

exception

many (>1) operands left."

Basic Blocks of 1ong process(Str‘lng[] args)

static long process(java.lang.String[] args) | 69

stack = new demo.SimpleCalculator.Stack

0 | stack.<init>()

pld = ®(0<0,p65<11)
1 | pl7 = args.length
if(pl7 > pl4)

2 | p20 = args[pl4]
3 long p23 = java.lang.Long.parseLong(p20)
stack.push(p23)
. f
4
java.lang.NumberFormatException
5| int p30 = stack.size()
if(1 >= p30)

long p40 = stack.pop()

8 long p43 = stack.pop()
p47 = p20.equals("'+")
if(p47)

t

9 p50 = p20.equals('*") 15 p70 = stack.size()

if(p50) if(p70 !'= 1)
long p58 = p43 + p40
12 | stack.push(p58) t f
long p54 = p43 * p40 p36 = new lllegalArgumentException p72 = new lllegalArgumentException 15 = G 3l
10 | stack.push(p54) 6 | p36.<init("...") 16 | p72.<inits('...") 17 fetur; 5 -pop
throw p36 throw p72 P

/ o

11 | intp65 =pld + 1

static long process(java.lang.String[] args) | 70

PR

B |11 LJJ vl vXp v q

vai&vo q.va,e;as?@vJ@& =

[[@3CVS Reposit... ﬁDebug

= Navi [t Juni 53 N Packl ==

Finished after 0.065 seconds A4
0o PR QR ® -

B Failures:

Runs: 2/: B Errors:

> E] demo.SimpleCalculatorTest [Runner

—————

= Failure Trace

m SimpleCalculator.jav 53

[1‘] SimpleCalculatorTest I 745

for (int 1 = @; 1 < args.length; i++) {
String arg = args[i];
try {
long value = Long.parselLong(arg);
values.push(value);
} catch (NumberFormatException nfe) {
// there is no method to test if a string is a numl

if (values.size() > 1) {
long r = values.pop();
long 1 = values.pop();

if (arg.equals("+")) {
values.push(l + r);
continue;

}

if (arg.equals("*")) {
values.push(l * r);
continue;

}

}

throw new IlIegalArgumentExceptton(

L

] Console |

55--0

SimpleCalculatorTest (Nov 10, 2009 4:50: 1 b

Coverage Covered Instructions
97.3% 110

97.3% 110
100.0% 28

Element A
v |J] SimpleCalculator.java

v C'}SimpleCaIcuIator
> Cﬁ Stack

@ main(String(]) 100.0 %

process(String(]) 100.0 %

([

Tot

P

~—
A
v

|| seMof21im | |

ECL
Emma
Eclipse
Plug-1n)

static long process(java.lang.String[] args) | 71

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;

import java.util.Arrays;

import org.junit.Test;

public class SimpleCalculatorTest {

ATest |

V\/rltl ﬂg a public void testProcess() {
T@St Case String[] term = new String[] {
using Junit S e T
(Zl) léng result = SimpleCalculator.process(term);

wssertEquals(Arrays.toString(term), 63, result); |

static long process(java.lang.String[] args) | 72

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;

import java.util.Arrays;

\/\/r|t|ng 3 import org.junit.Test;

Test Case
LJSS|F]EJ_JLJr]|t public class SimpleCalculatorTest extends ... {
(23) public void testProcess() {
o try {
-T%EfSt: r]gy SimpleCalculator.process(new String[0]);

: focQ); '

EXce pt on } catch (IllegalArgumentException iae) {

H an C“ ' N g assertEquals(

“:00 few (@) or too many (>1) operands.",
iae.getMessage());

}

static long process(java.lang.String[] args) | 73

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;

import java.util.Arrays;

\/\/r|t|ng 3 import org.junit.Test;

Test Case
, , ublic class SimpleCalculatorTest
Jsing Junit °F P ¢
Zl @Test(expected=IllegalArgumentException.class) |
() public void testProcess() 1

Testing
Exception
Handling

SimpleCalculator.process(new Stringl[0]);

TestNG

Alternative Frameworks for Writing Tests | 74

// This method will provide data to any test method
// that declares that its Data Provider 1is named "providerl".
@DataProvider(name = "providerl")
public Object[][] createDatal() {
return new Object[][] {
{ "Cedric", new Integer(36) 1},
{ "Anne", new Integer(37) }
Fi
s

// This test method declares that its data should be

// supplied by the Data Provider named "providerl".

@Test(dataProvider = "providerl")

public void verifyDatal(String nl, Integer n2) {
System.out.println(nl + " " + n2);

Hamcrest

Supplemental Framework for Writing Tests | 75

import static org.hamcrest.MatcherAssert.assertThat;
import static org.hamcrest.Matchers.x;

import junit.framework.TestCase;

public class BiscuitTest extends TestCase A
public void testEquals() {
Biscuit theBiscuit = new Biscuit("Ginger");
Biscuit myBiscuit = new Biscuit("Ginger");
assertThat(theBiscuit, equalTo(myBiscuit));

¥

ScalaTest

(Can also be used for testing Java.)
Alternative Frameworks for Writing Tests | 76

class DefaultIntegerRangesTest
extends FunSpec with Matchers with ParallelTestExecution {

small concise

describe("IntegerRange values") { {ests
(“atomic tests”)

describe("the behavior of irem") {

it("AnIntegerValue % AnIntegerValue => AnIntegerValue + Exception") {
val vl = AnIntegerValue()

val v2 = AnIntegerValue()

val result = irem(-1, v1, v2) - ¢
result.result shouldBe an[AnIntegerValue] very goo suppqrt Or
result.exceptions match { Pattern Matching

case SObjectValue(ObjectType.ArithmeticE
case v = fail(s"expected ArithmeticException; found $v")

Behavior-Driven Development

The goal is that developers define the behavioral intent

of the system that they are developing.
http://behaviour-driven.org/

Software Testing - Behavior-Driven Development | 77

Using ScalaSpec 1.5: http://code.google.com/p/specs/

import org.specs.runner._
import org.specs.._

object SimpleCalculatorSpec extends Specification {

should {
in {
SimpleCalculator.process(Array(, ,)) must_== 36

h
¥

Implemented in Scala

(Method-) Stub

Software Testing - Terminology | 78

e A stub Is a partial, temporary implementation of a

component (e.qg., a placeholder for an incomplete
component)

e Stubs are often required to simulate complex systems; to
Mmake parts of complex systems testable in i1solation

An alternative is to use a Mock
object that mimics the original
object in its behavior and
facilitates testing.

Debugging vs. Testing | 79

Testing comprises the efforts to find defects.

Debugging Is the process of locating and correcting
defects.

(Hence, debugging is not testing, and testing is not debugging.)

Summary

TECHNISCHE
UNIVERSITAT
DARMSTADT

Goal of the Lecture | 81

The goal of this lecture is to enable you to

SVS
P

L[

Mmatica

'y carry out sma

FOJ

ects that produce qualr

[(er) software

'y software.

e Testing has to be done systematically; exhaustive testing is not possible.
e Test coverage models help you to assess the quality of your test suite;
however, “just” satisfying a test coverage goal is usually by no means

sufficient.

e Do take an “external” perspective when you develop your test suite.

Goal of the Lecture | 82

The goal of this lecture is to enable you to systematically carry out small(er)
commercial or open-source projects.

Developi, \nning Tests

— = /N Project Management
e ﬁ | i B Y N i j‘

Project Project
Start nd

B Requirements Management
B Domain Modeling
B Testing

The Last Word | 83

‘ ‘ A Tester’s Courage

The Director of a software company proudly
announced that a flight software developed by the
company was installed in an airplane and the
airline was offering free first flights to the
members of the company. “Who are interested?”
the Director asked. Nobody came forward. Finally,
one person volunteered. The brave Software
Tester stated, ‘I will do it. | know that the airplane
will not be able to take off.’

Unknown Author
http://www.softwaretestingfundamentals.com

