
Dr. Michael Eichberg
Software Technology Group
Department of Computer Science
Technische Universität Darmstadt

Introduction to Software Engineering

The Strategy
Design Pattern
For details see Gamma et al. in “Design Patterns”

|The GoF Design Patterns

The Strategy Design Pattern
Intent & Example

2

IntSortHandle

«interface»
SortHandle

DoubleSortHandle

BubbleSorter

QuickSorter

Strategies

"C
lie
nt
s"

Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

|

Define a family of algorithms,
encapsulate each one, and make
them interchangeable. Strategy lets
the algorithm vary independently
from clients that use it.

The GoF Design Patterns

The Strategy Design Pattern
Excerpt of the Structure

3

IntSortHandle

«interface»
SortHandle

DoubleSortHandle

BubbleSorter

QuickSorter

Strategies

"C
lie
nt
s"

Strategy

«interface»
HandleClient

|The GoF Design Patterns

The Strategy Design Pattern
General Structure

4

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()

Define a family of algorithms,

encapsulate each one, and make

them interchangeable.

|The GoF Design Patterns

The Strategy Design Pattern
Strategy - An Alternative to Subclassing

5

•Subclassing Context mixes algorithm‘s
implementation with that of Context  
Context harder to understand, maintain, extend.
•When using subclassing we can't vary the

algorithm dynamically
•Subclassing results in many related classes 

Only differ in the algorithm or behavior they
employ.
•Encapsulating the algorithm in Strategy...
• lets you vary the algorithm independently of

its context
•makes it easier to switch, understand, reuse

and extend the algorithm

If you
would use
subclassing
instead of
the
Strategy
Design
Pattern.

|The Strategy Design Pattern
Example - “The Strategy Pattern” in Java AWT/Swing

6

java.awt.Container c = ...;
c.setLayout(new java.awt.BorderLayout())

public class Container extends Component {
...

 /**
 * Sets the layout manager for this container.
 * @param mgr the specified layout manager
 */
 public void setLayout(LayoutManager mgr) {
 layoutMgr = mgr;
 invalidateIfValid();
 }

 /**
 * Causes this container to lay out its components. ...
 */
 public void doLayout() {
 LayoutManager layoutMgr = this.layoutMgr;
 if (layoutMgr != null) {
 layoutMgr.layoutContainer(this);
 }
 }
}

Client Code

layoutContainer(Container c) : void

LayoutManager
«interface»

BorderLayout

Container

|The GoF Design Patterns

The Strategy Design Pattern
When to use Strategy

7

•…many related classes differ only in their behavior rather
than implementing different related abstractions 
Strategies allow to configure a class with one of many behaviors.
•…you need different variants of an algorithm 

Strategies can be used when variants of algorithms are
implemented as a class hierarchy.
•…a class defines many behaviors that appear as multiple

conditional statements in its operations  
Move related conditional branches into a strategy.

|The GoF Design Patterns

The Strategy Design Pattern
Things to Consider

8

•Clients must be aware of different strategies and how they
differ, in order to select the appropriate one
•Clients might be exposed to implementation issues
•Use Strategy only when the behavior variation is relevant

to clients

|The GoF Design Patterns

The Strategy Design Pattern
Things to Consider

9

•Optional Strategy objects
• Context checks if it has a Strategy before accessing it...
• If yes, Context uses it normally
• If no, Context carries out default behavior

• Benefit: clients don't have to deal with Strategy objects
unless they don't like the default behavior

|The GoF Design Patterns

The Strategy Design Pattern
Things to Consider

10

• Increased number of (strategy) objects
•Sometimes can be reduced by stateless strategies that

Contexts can share
•Any state is maintained by Context, passes it in for each

request to the Strategy object 
(No / less coupling between Strategy implementations and
Context.)
•Shared strategies should not maintain state across

invocations  
(→Services)

|The GoF Design Patterns

The Strategy Design Pattern
Implementation

11

• The Strategy interface is shared by all Concrete Strategy
classes whether the algorithms they implement are trivial
or complex
•Some ConcreteStrategies won't use all the information

passed to them  
(Simple ConcreteStrategies may use none of it.)  
(Context creates/initializes parameters that never get used.)  
If this is an issue use a tighter coupling between Strategy and
Context; let Strategy know about Context.

Communication Overhead

|The GoF Design Patterns

The Strategy Design Pattern
Implementation

12

Giving Strategy Visibility for the Context Information the Strategy
needs
Two possible strategies:
▶ Pass the needed information as a parameter...
▶ Context and Strategy decoupled
▶ Communication overhead
▶ Algorithm can’t be adapted to specific needs of context

▶ Context passes itself as a parameter or Strategy has a reference
to its Context...
▶ Reduced communication overhead
▶ Context must define a more elaborate interface to its data
▶ Closer coupling of Strategy and Context

|The GoF Design Patterns

Comparison of the
Strategy Design Pattern
and the
Template Design Pattern

13

ConcreteStrategyC

«interface»
StrategyContext

ConcreteStrategyBConcreteStrategyA
algorithmInterface() algorithmInterface()algorithmInterface()

algorithmInterface()
Strategy

«interface»
HandleClient

Using the strategy pattern, both - the

template and the detailed

implementations - depend on

abstractions (interfaces).

