
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

System Sequence Diagrams
The following slides make extensive use of material
from:  
Applying UML and Patterns, 3rd Edition; Craig Larman;
Prentice Hall

|System Sequence Diagram

A system sequence diagram (SSD) illustrates input and
output events.

• An SSD shows – for one particular scenario of a use case –
• the events that external actors generate,
• their order, and
• inter-system events

• The system is treated as a black-box
• SSDs are derived from use cases; SSDs are often drawn for the

main success scenarios of each use case and frequent or complex
alternative scenarios

• SSDs are used as input for object design

2

|Object-oriented Design
System Events and System Operations

• System operations are the operations that the system as a black
box component offers in its public interface. These are high-level
operations triggered by an external input event / system event
generated by an external actor

• During system behavior analysis, system operations are assigned
to a conceptual class System

3

|Object-oriented Design

The system operations are shown in the system
sequence diagram (SSD).

• To provide more analysis detail on the effect of the system
operations implied use cases, (System) Operation Contracts may
be considered

4

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

loop [more items]

endSale

makePayment (amount)

total with taxes

change due, receipt

|Object-oriented Design
Operation Contract Template

5

Operation:
Name of the operation and parameters.

Cross References:
Use cases this operation can occur with.

Preconditions:
Noteworthy / non-trivial assumptions about the
system or objects in the domain model before
execution of the operation.

Postconditions:
The state of the objects in the domain model after
completion of the operation. Domain model state
changes include:
▶ instances created,
▶ associations formed or broken,
▶ attributes changed.
[Postconditions should be stated in the past tense.]

Helpful when assigning

responsibilities to classes  

(More details will follow).

|Object-oriented Design
Operation Contract for “enterItem()”

6

Operation:
enterItem(itemId: ItemId, quantity: Integer)

Cross References:
Use Cases: Process Sale

Preconditions:
There is a sale underway.

Postconditions:
▶ A SalesLineItem instance (SLI) was created.  

(instance creation)
▶ SLI was associated with the current Sale.  

(association formed)
▶ SLI was associated with a ProductDescription, based

on itemId match. 
(association formed)

|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

Use Case: Process Sale Scenario - Main Success Story

1. Cashier starts new sale

2. Cashier enters item identifier

3. System records sale line item and presents item description,  
price and running total 
Steps 2 and 3 are repeated until all items are processed.

4. System presents total with taxes calculated

5. Cashier tells Customer the total and asks for payment

6. Customer pays and System handles payment

7

|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

8

SSDs are drawn using UML’s sequence diagram notation. The name of each event should
state the intention (e.g. “enterItem(itemId)” vs. “scan(itemId)”).

Communication Partners
M

es
sa

ge
 O

rd
er

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

endSale

makePayment (amount)

total with taxes

change due, receipt

|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

9

SSDs are drawn using UML’s sequence diagram notation. The name of each event should
state the intention (e.g. “enterItem(itemId)” vs. “scan(itemId)”).

Basic SSD

an external actor to the system
a message with parameters

return value(s)
(optional if nothing is returned)

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

endSale

makePayment (amount)

total with taxes

change due, receipt

|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

Use Case: Process Sale Scenario - Main Success Story

1. Cashier starts new sale

2. Cashier enters item identifier

3. System records sale line item and presents item description,  
price and running total 
Steps 2 and 3 are repeated until all items are processed.

4. System presents total with taxes calculated

5. Cashier tells Customer the total and asks for payment

6. Customer pays and System handles payment

10

|System Sequence Diagram
Example of an SSD for the Process Sale Scenario

Use Case: Process Sale Scenario - Main Success Story

1. Cashier starts new sale

2. Cashier enters item identifier

3. System records sale line item and presents item description,  
price and running total 
Steps 2 and 3 are repeated until all items are processed.

4. System presents total with taxes calculated

5. Cashier tells Customer the total and asks for payment

6. Customer pays and System handles payment

11

|System Sequence Diagram
Visualizing SSDs - Excerpt From the POS Domain

12

Process Sale Scenario

:System:Cashier

enterItem(itemId, quantity)

description, price, total

loop [more items]

|System Sequence Diagram
“Complete” SSD for the Process Sale Scenario

13

:System:Cashier

Process Sale Scenario

enterItem(itemId, quantity)

makeNewSale

description, price, total

loop [more items]

endSale

makePayment (amount)

total with taxes

change due, receipt

|Using UML 14

Drawing UML diagrams is a reflection of making
decisions about the design.
 
What matters are the fundamental object design skills
- not knowing how to draw UML.

Summary

|Goal of the Lecture

The goal of this lecture is to enable you to
systematically carry out small(er) software projects
that produce quality software.

16

• SSDs are used as input for object design and provide more details

|Goal of the Lecture

• The goal of this lecture is to enable you to systematically carry
out small(er) commercial or open-source projects.

17

Project
Start

Project
End

Requirements Management
Domain Modeling

Domain Modeling

…
Software Project Management

Testing
Modeling

Modeling

