
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

Software Process Models

|Software Process (Models)

Fundamental Process Activities

The Software (Engineering) Process is the set of activities
and associated results that produce a software product.

• Requirements specification

• Software specification 
Definition of the software to be produced and the constraints of its operation.

• Software development 
Design and implementation of the software.

• Software validation 
To ensure that the software does what the customer requires.

• Software evolution 
Adaptation and modification of the software to cope with changing customer
and market requirements.

�2

|Software Process (Models)

Software (Engineering) Process Models are
simplified and abstract descriptions of a software
process that present one view of that process.

• Process models may include activities that are part of the software
process, software products (e.g. architectural descriptions, source
code, user documentation) and the roles of people involved in
software engineering.

• Examples:
• The waterfall model
• Scrum
• “V-Modell (XT)” (dt.)
• eXtreme Programming
• …

�3

|Process Models

Large(r) projects may use different (multiple) software process
models to develop different parts of the software.

�4

The Waterfall Model

|Software Process Models - The Waterfall Model

The Waterfall Model can be considered as a generic
process model.

1. Requirements analysis and definition 
The requirements are established by consultation with system
users. After that they are defined in detail and serve as the
system specification.

�6

Requirements
Definition

|Software Process Models - The Waterfall Model

The Waterfall Model can be considered as a generic
process model.

2. System and Software design 
The overall system architecture is defined. The fundamental
software system abstractions and their abstractions are
identified.

�7

Requirements
Definition

System and
Software Design

|Software Process Models - The Waterfall Model

The Waterfall Model can be considered as a generic
process model.

3. Implementation and unit testing 
The software design is realized as a set of program units; testing
verifies that each unit meets its specification.

�8

Requirements
Definition

System and
Software Design

Implementation
and Unit Testing

|Software Process Models - The Waterfall Model

The Waterfall Model can be considered as a generic
process model.

4. Integration and system testing 
Program units are integrated and tested as a complete system.

�9

Requirements
Definition

System and
Software Design

Implementation
and Unit Testing

Integration and  
System Testing

|Software Process Models - The Waterfall Model

The Waterfall Model can be considered as a generic
process model.

5.Operation and Maintenance 
The system is installed and put into
practical use. Maintenance involves
correcting errors and improving
the system when new requirements
are discovered.

�10

Operation and
Maintenance

Requirements
Definition

System and
Software Design

Implementation
and Unit Testing

Integration and  
System Testing

|Software Process Models - The Waterfall Model

The Waterfall Model can be considered as a generic
process model.

�11

Operation and
Maintenance

Requirements
Definition

System and
Software Design

Implementation
and Unit Testing

Integration and  
System Testing

|Software Process Models - The Waterfall Model
Key Properties of the Waterfall Model

�12

Operation and
Maintenance

Requirements
Definition

System and
Software Design

Implementation
and Unit Testing

Integration and  
System Testing

• The result of each phase is a set of artifacts that is approved.
• The following phase starts after the previous phase has finished. 

(In practice there might be some overlapping.)
• In case of errors previous process stages have to be repeated.
• Fits with other (hardware) engineering process models. 

(But even hardware developers are now moving in the direction
of agile methods!)

Agile Development
• Agile Software Development - Principles,

Patterns, and Practices; Robert C. Martin; 2003 
 
Agile Methoden bauen auf iterativen Ansätzen auf.

|Agile Software Engineering Process Models - Agile Development
Agile Development - Key Points

• The goal is to develop software quickly, in the face of rapidly
changing requirements

• Originally conceived for small to mid-sized teams
• To achieve agility we need to ...

• employ practices that provide the necessary discipline and
feedback

• employ design principles that keep “our” software flexible and
maintainable

• know the design patterns that have shown to balance those
principles for specific problems

�14

|Agile Software Engineering Process Models - Agile Development

Using an agile method does not mean that the
stakeholders will always get what they want.  
It simply means that they’ll be able to control
the team to get the most business value for
the least cost.

�15

Agile Development
• Manifesto

|Agile Software Engineering Process Models - Agile Development
Manifesto for Agile Software Development

Individuals and interactions over process and tools.  
The best tools will not help if the team doesn’t work together.
Start small and grow if needed.

�17

|Agile Software Engineering Process Models - Agile Development
Manifesto for Agile Software Development

Working software over comprehensive documentation.  
The structure of the system and the rationales for the design
should be documented.

�18

|Agile Software Engineering Process Models - Agile Development
Manifesto for Agile Software Development

Customer collaboration over contract negotiation.  
The contract should specify how the collaboration between the
development team and the customer looks like.  

�19

|Agile Software Engineering Process Models - Agile Development
Manifesto for Agile Software Development

Responding to change over following a plan.

�20

time
(weeks)

today

2
4

6
8

10
12

precise rough big picturePlan:

Agile Development
• Principles

|Agile Software Engineering Process Models - Agile Development
Principles of Agile Development

• Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a strong preference to the shorter
timescale (e.g. every two weeks)

• Working software is the primary measure of progress 
If 30% of the functionality is implemented, 30% of the project is done.

• Continuous attention to technical excellence and good design
enhances agility

• Simplicity - the art of maximizing the amount of work not done - is
essential

• ...

�22

|Agile Software Engineering Process Models - Agile Development
Principles of Agile Development

• ...
• Welcome changing requirements, even late in development;

agile processes harness change for the customer’s competitive
advantage

• At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly 
Process Improvement

• The best architectures, requirements, and designs emerge from
self-organizing teams

�23

|Agile Software Engineering Process Models - Agile Development
Principles of Agile Development

• Business people and developers must work together daily
throughout the project

• Build projects around motivated individuals; give them the
environment and support they need, and trust them to get the
job done

• Agile processes promote sustainable development; the sponsors,
developers, and users should be able to maintain a constant pace
indefinitely

�24

Time

Workload

M2M1 Release

sustainable

not sustainable

typical

ideal

|Agile Software Engineering Process Models - Agile Development
Agile Processes

• SCRUM(~Project Management Method)
• (Agile) Unified Process
• Crystal
• Feature Driven Development
• Adaptive Software Development
• Extreme Programming
• ...

�25

|The Power of Iterative Processes - The Marshmallow Challenge �26

Unified Process
A Very First Glimpse

|Software Engineering Processes - Unified Process
Unified Process - Phases

1. Inception (~dt. Konzeption)  
Feasibility phase, where just enough investigation is done to
support a decision to continue or stop

2. Elaboration (~dt. Entwurf) 
The core architecture is iteratively implemented; high risks are
mitigated 
(mitigate =dt. mildern / abschwächen)

3. Construction (~dt. Konstruktion) 
Iterative implementation of remaining lower risk and easier
elements, and preparation for deployment

4. Transition (~dt. Übergabe) 
Beta tests, deployment

�28

|Unified Process �29

1 2 3 4 5 20 iterations

|Unified Process �30

Iteration 4

85%

Iteration 5

90%

requirem
ents

requirem
ents

1 2 3 4 5 20

Iteration 1

requirem
ents

softw
are

Iteration 2

requirem
ents

softw
are

Iteration 3

requirem
ents

softw
are

softw
are

softw
are

2% 5% 8% 10% 20%20% 30% 50%

iterations

|Unified Process �31

Iteration 4

85%

Iteration 5

90%

requirem
ents

requirem
ents

1 2 3 4 5 20

Iteration 1

requirem
ents

softw
are

Iteration 2

requirem
ents

softw
are

Iteration 3

requirem
ents

softw
are

softw
are

softw
are

2% 5% 8% 10% 20%20% 30% 50%

iterations

requirements
workshop

|Unified Process �32

Iteration 4

85%

Iteration 5

90%

requirem
ents

requirem
ents

1 2 3 4 5 20

Iteration 1

requirem
ents

softw
are

Iteration 2

requirem
ents

softw
are

Iteration 3

requirem
ents

softw
are

softw
are

softw
are

2% 5% 8% 10% 20%20% 30% 50%

M T W Th F M T W Th F M T W Th F

iterations

3 weeks

kickoff meeting
clarifying iteration goals

start coding & testing

de-scope iteration goals if too much work
next iteration planning

demo and 2-day requirements workshopagile modeling & design

requirements
workshop

|Software Engineering Processes - Unified Process
General Practices

• Tackle high-risk and high-value issues in early iterations
• Continuously engage users for evaluation, feedback, and

requirements
• Build a cohesive core architecture in early iterations
• Continuously verify quality; test early, often, and realistically
• Apply use cases where appropriate
• Do some visual modeling
• Carefully manage requirements
• Practice change request and configuration management

�33

Extreme Programming

|Software Engineering Process Models

Extreme programming
is made up of a set of simple, interdependent
practices.

�35

Practices = dt. Verfahren / Verfahrensregeln

In the following we discuss
(only) those principles

that are now commonly
used across most projects.

|Software Engineering Process Models
Extreme Programming - Practices

User Stories
Requirements are talked over with the customer but only a few
words that reminds everybody of the conversation are written on
an index card along with an estimate.

�36

|Software Engineering Process Models
Extreme Programming - Practices

Short Cycles
Working software is delivered every, e.g., two weeks (an
iteration); the delivered software may or may not be put into
production. 
Iterations are timeboxed - date slippage is illegal; if you cannot
complete all tasks scheduled for the iteration remove some.

It. 1 It. 4
n

days

n

days

n

days

�37

|Software Engineering Process Models
Extreme Programming - Practices

Short Cycles 

Iteration Plan
During each iteration the user stories and their priorities are
fixed.  
The customer selects the user stories they want to have
implemented. The number of stories is limited by the budget,
which is set by the developers.

�38

It. 1 It. 4
n

days

n

days

n

days

|Software Engineering Process Models
Extreme Programming - Practices

Short Cycles 

Release Plan
Maps out approx. six iterations. Can always be changed.

It. 1 It. 6
n

days

n

days

n

days

n

days

n

days

�39

|Software Engineering Process Models
Extreme Programming - Practices

The Planning Game
Division of responsibility between business and development.
Business people decide how important a feature is and the
developers decide how much that feature will cost to
implement.

It. 1 It. 6
n

days

n

days

n

days

n

days

n

days

Feature

X,Y,...
... Feature

Z,...

�40

|Software Engineering Process Models - Extreme Programming
Extreme Programming - Planning

• Initial Exploration (Start of the Project)
• Developers and customers try to identify all significant user

stories; i.e., they do not try to identify all stories
• The developers estimate - relative to each other - the stories by

assigning story points; a story with twice as much points as
another story is expected to take twice as long to implement

• To know the true size we need the velocity 
(velocity = time required per story point) 
The velocity will get more accurate as the project proceeds; initially it is
just guessed based on “experience”. 

�41

A prototype
developed to measure the velocity is called a spike.

|Software Engineering Process Models - Extreme Programming
Extreme Programming - Planning

• Iteration Planning
• The customer picks the stories for the iteration
• The order of the stories within the iteration is a technical decision
• The iteration ends on the specified date (timeboxed), even if all

stories aren’t done
• The estimates for all the stories are totaled and the velocity for that

iteration is calculated
• The planned velocity for each iteration is the measured velocity of

the previous iteration

�42

|Software Engineering Process Models - Extreme Programming
Extreme Programming - Planning

• Task Planning
• At the start of each iteration the developer and customers get

together to plan
• The stories are broken down into tasks which require between 4

and 16 hours to implement
• Each developer signs up for tasks  

A developer can choose an arbitrary task - even if he is not an expert

�43

|Software Engineering Processes

For further details go to: https://en.wikipedia.org/wiki/Planning_poker

The Planning Game - “Planning Poker”

• The Product Manager provides a short overview. The team is given an
opportunity to ask questions and discuss to clarify assumptions and risks.

• Each individual lays a card face down representing their estimate. Units used
vary - they can be days duration, ideal days or story points.

• Everyone calls their cards simultaneously by turning them over.
• People with high estimates and low estimates need to justify their estimate and

then discussion continues.
• Repeat the estimation process until a consensus is reached.

�44

https://en.wikipedia.org/wiki/Planning_poker

|Software Engineering Processes
The Planning Game - Playing “Planning Poker”

• Estimate the effort required to implement the following
functionality:
• Read an “annotated Properties” file and return a map that contains

the specified and validated properties.
• Each line is either empty, starts with a “#” if it is a comment, or uses the

following pattern: 
‘[‘<TYPE>’]’<KEY> ‘=‘ <VALUE>

• If a failure occurs while parsing a line, the line is ignored and parsing
continues with the next line.

• After parsing the complete file, a map is returned with the validated
properties; all lines that cannot be parsed or fail validation are also
returned.

�45

|Software Engineering Process Models
Extreme Programming - Practices

Acceptance Tests
Details of the user stories are captured in the form of acceptance
tests. 
Acceptance tests (which are typically black-box tests) are written
before or concurrent with the implementation of a user story. 
Once an acceptance test passes, it is added to the set of passing
acceptance tests and is never allowed to fail again.

�46

|Software Engineering Process Models
Extreme Programming - Practices

Pair Programming
The code is written by pairs of programmers; one types the code
and the other member watches the code being typed - the
keyboard is moved between the developers. The pairs change
after half a day to make sure that the knowledge is spread.

�47

An extension of the idea
is “Mob Programming”

|Software Engineering Process Models
Extreme Programming - Practices

Refactoring
Do frequent refactorings to avoid that the code “rots” due to
adding feature after feature.

�48

Refactoring means
improving the

structure without
changing behavior.

|Software Engineering Process Models
Extreme Programming - Practices

Test-Driven Development
All code is written to make failing (unit) tests pass! Having a
(very) complete body of test cases facilitates refactorings and
often (implicitly) leads to less coupled code.

�49

These tests are developed by the “developers”.

|Software Engineering Process Models
Extreme Programming - Practices

Continuous Integration
Programmers check in their code and integrate several times per
day; non-blocking source control is used. After check-in the
system is build and every test (including running acceptance
tests) is run.

�50

|Software Engineering Process Models
Extreme Programming - Practices

Simple Design
Make the design as simple and expressive as possible. Focus on
the current set of user stories; don’t worry about future user
stories. 
E.g. only add the infrastructure when a story forces it.

�51

|Software Engineering Process Models
Extreme Programming - Practices

Consider the simplest thing that could possibly work! 
Find the simplest design option for the current set of user
stories.
You aren’t going to need it! 
Add infrastructure only if there is proof or at least compelling
evidence.
Once and only once; don’t tolerate code duplication;  
eliminate code redundancies by creating  
abstractions. Employ patterns to remove 
redundancies.

�52

Simple
Design

|

“

 com.sun.jmx.snmp.SnmpInt; lines 191-212

Don’t tolerate code duplication!

OpenJDK8

boolean isInitValueValid(long v) {
if ((v < Integer.MIN_VALUE) || (v > Integer.MAX_VALUE)) {
return false;

}
return true;

}

boolean isInitValueValid(int v) {
if ((v < Integer.MIN_VALUE) || (v > Integer.MAX_VALUE)) {
return false;

}
return true;

}

�53

http://www.grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8u40-b25/com/sun/jmx/snmp/SnmpInt.java#SnmpInt

|

“
Software Engineering Process Models - Extreme Programming

Extreme Programming in Practice; Addison Wesley, 2001
James Newkirk and Robert C. Martin

Example: User Stories for a Web Application

�54

My story
is..

|Software Engineering Process Models - Extreme Programming
Example: User Stories for a Web Application

�55

one day

Some pages trigger the login mechanism and some
don't.

The list of pages that do/don't is dynamic.

And the mechanism is triggered once per session.

Estimates (upper
right corner) are
given in ideal

days in this case

|Software Engineering Process Models - Extreme Programming
Example: User Stories for a Web Application

�56

Constraint

The system will not pop up a window that could
be interpreted as a pop-up ad.

Non-implementable
user stories

|Software Engineering Process Models - Extreme Programming
Example: User Stories for a Web Application

�57

Login Story - two days

When the login is triggered, and the site cannot
detect that the user is a member, the user is
transferred to a login page, which asks for their
username and password and explains the login
process & philosophy of the site.

Login Start Login Task ...

The story is broken up into tasks.

Breaking down stories into tasks.

Login Start

Read cookie.
If present
 Display login ack. with user e-mail address and
 option to login as someone else.
else
 Bring up login page.

Login Task

Takes data from HTML input. Checks the database
for e-mail and password. Stores cookie if
selection has been made. Routes to URL from
where you came from if successful. Creates
session. If not successful, back to login with
message indicating failure.

|Software Engineering Process Models - Extreme Programming
Example: User Stories for a Web Application

�58

Login Start

Read cookie.
If present
 Display login ack. with user e-mail address and
 option to login as someone else.
else
 Bring up login page.

Login Task

Takes data from HTML input. Checks the database
for e-mail and password. Stores cookie if
selection has been made. Routes to URL from
where you came from if successful. Creates
session. If not successful, back to login with
message indicating failure.

Breaking down stories into tasks.

|Software Engineering Process Models - Extreme Programming
Principles of Good Stories

• Stories must be understandable to the customer
• Each story must provide something of value to the customer
• Stories need to be of a size that you can build a few of them in

each iteration
• Stories should be independent
• Each story must be testable

�59

INVEST
Independent, Negotiable, Valuable, Estimable, Sized appropriately, Testable

|Software Engineering Process Models - Extreme Programming
Established Templates for Writing User Stories

• Long template: 
"As a <role>, I want <goal/desire> so that <benefit>"

• Shorter template:  
"As a <role>, I want <goal/desire>"

�60

|User Stories
Recording User Stories - An Example

�61

ID 2

Name Login

Beschreibung Als Administrator muss ich mich am System mittels Benutzername und
Passwort authentifizieren können, um Änderungen vornehmen zu
können.Akzeptanzkriterium Der Dialog zum Einloggen wird korrekt angezeigt und es ist möglich
sich als Administrator zu authentifizieren. Ungültige Eingaben werden
ignoriert und normale Nutzer erhalten nicht die Rolle “Administrator”.

Geschätzter Aufwand (Story Points) 3

Entwickler Max Mustermann

Umgesetzt in Iteration 2

Tatsächlicher Aufwand (Std.) 12

Velocity (Std./Story Point) 4

Bemerkungen /

|Placeholder
Scrum a Brief Overview

• Scrum is a project management framework
• Scrum employs an iterative, incremental approach to optimize

predictability and control risk

�62

|Scrum
Scrum vs. Waterfall

�63

Operation and
Maintenance

Requirements
Definition

System and
Software Design

Implementation
and Unit Testing

Integration and  
System Testing

Operation

Analyze

Design

Implementation

Testing

Plan

Pl
an

Pl
an

Operation

Analyze

Design

Implementation

Testing

Pl
an

|Scrum
Scrum Planning

�64

Operation

Analyze

Design

Implementation

Testing

Pl
an

Operation

Analyze

Design

Implementation

Testing

Pr
oj

ec
t P

la
nn

in
g

Ite
ra

tio
n

Pl
an

ni
ng

Pl
an

Pr
oj

ec
t P

la
nn

in
g

Ite
ra

tio
n

Pl
an

ni
ng

Pl
an

Pr
oj

ec
t P

la
nn

in
g

Ite
ra

tio
n

Pl
an

ni
ng

|Scrum
Scrum a Brief Overview

�65

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

"Scrum process" by Lakeworks - Own work. Licensed under GFDL via Commons - https://commons.wikimedia.org/wiki/

Often less
than 30 days

|Scrum
Scrum a Brief Overview - Roles & Responsibilities

• Product Owner

• manages the Product Backlog

• Development Team

• delivers working software (i.e., software that is done - w.r.t. a reasonable
definition of “done”)

• manages itself

• Scrum Master

• takes care of the process and

• ensures that the process is followed

�66

|Scrum
Scrum a Brief Overview - Events I

• Sprint
• time boxed iteration
• all development is done within a sprint
• starts with a sprint planning and ends with the sprint review

• Sprint Planning
• identify the tasks/features from the product backlog to work on

during the sprint (determine the sprint backlog); done in
collaboration between the product owner and the development
team

• do design work

�67

|Scrum
Scrum a Brief Overview - Events II

• Daily Scrum
• a short, time boxed meeting to do just-in-time planning

• Sprint Review
• the development team and the product owner review the results
• the goal is to update the product backlog based on the results

• Retroperspective
• inspects how the last sprint went to improve it (and actually acts

accordingly)

�68

|Scrum
Scrum a Brief Overview - Artifacts

• Product Backlog
• the prioritized list of things that need to be done (maintained by the

product owner)
• transparent
• the priority is determined by considering the business value and the

risks involved
• high-priority things should be decomposed such that the things

(e.g., development tasks) are actionable
• Sprint Backlog

• actionable items from the product backlog

�69

|Software Process Models

Different types of systems need different development
processes.

E.g. software used in an aircraft has to be developed using a
different development process as an e-commerce web page. An
operating system has to be developed differently from a word
processor.
In large software systems different parts may be developed
using different process models.

�70

|Software Process Models
The one software process does not exist.

Processes have to exploit the capabilities of the people in an
organization and the specific characteristics of the systems that
are being developed.

�71

Summary

|Goal of the Lecture

The goal of this lecture is to enable you to systematically carry out small(er)
software projects that produce quality software.

�73

• To systematically develop software, you have to follow a well-defined process that
suites the needs of the project under development.

• It is practically impossible to work out all requirements right at the beginning of a
project.

|Goal of the Lecture

• The goal of this lecture is to enable you to
systematically carry out small(er) commercial or
open-source projects.

�74

Project
Start

Project
End

Software Project Management

Start of an Iteration

