Dr. Michael Eichberg
Software Engineering

Department of Computer Science

Technische Universitat Darmstadt

Software Engineering

On to
Object-oriented Design

TECHNISCHE
UNIVERSITAT
DARMSTADT

Object-oriented Design | 2

A popular way of thinking about the design of software objects and also
large scale components is in terms of responsibilities, roles and
collaborations.

Object-oriented Design | 3

\ makeNewSale

1
|
]
1
. . .
m [more items]} enterltem(itemid, quantity) .
l |

| i

|

| description, total

n,total ¢
DL

endSale

\

makePayment (amount) V

|

Which class / object should have which responsibility?

Object-oriented Design
Object-oriented Design | 4

e Artifacts that are/can be used as input for the object-oriented
design:
® a2 domain (analysis / conceptual) model

e descriptions of use-cases (user stories) which are under
development in the current iterative step

* Next steps:
Build interaction diagrams for system operations of the use-cases
at hand by applying guidelines and principles for assigning
responsibilities

Responsibility for System Operations
Object-oriented Design | 5

* During system behavior analysis (e.g. of the POS system), system

operations are assigned to a conceptual class (e.g. System)
Does not necessarily imply that there will be a class System in the design.

e A controller class is assigned to perform the system operations

System
endSale()
enterltem()
makePayment()

Responsibility for System Operations

Object-oriented Design 6

* During system behavior analysis (e.g. of the POS system), system

System)
in the design.

operations are aSS|gned to a conceptual class (e.
Does not nec

° A controlleT Who should be respormb\e for
handling system operations? What

first object
cceives and coordinates a system

opera’uon"

operations

(

System
endSale()
enterltem()
makePayment()

Responsibility for System Operations
Object-oriented Design | 7

* During system behavior analysis (e.g. of the POS system), system

operations are assigned to a conceptual class (e.a. System)
Does not impl——" n.

Who should be responsible tor
handling system operations? What

e A controlle

The system operations become
the starting messages entering the
controllers for domain layer
interaction diagrams.

endSale()
enterltem()
makePayment()

Interaction Diagrams for System Operations
Object-oriented Design | 8

e Create a separate diagram for each system operation in the
current development cycle

e Use the system operation, e.g., enterltem(), as starting message
e |f a diagram gets complex, split it into smaller diagrams
* Distribute responsibilities among classes:

e from the conceptual model and may be others added during object
design
The classes will collaborate for performing the system operation.

* based on the description of the behavior of system operations

Foundations of
Object-oriented Design

«%5s TECHNISCHE
NIS7#\ -
EW©/ UNIVERSITAT

9’ DARMSTADT

Respon:ibility

Responsibility | 10

R. Martin

Each responsibility is an axis of change.

When the requirements change, a change will manitest through
a change in responsibility amongst the classes.

It a class has multiple responsibilities, it has multiple reasons to
change.

Object-oriented Design - Responsibility | 11

Assighiing Q€$ FOM bi‘t&&v to classes is

one of the most tmportant activities during the
desigin, Patterins, idioms, principles ete. help in
assigning the responsibilities.

Object-oriented Design - Responsibility | 12

In QQS POM biti&?—driven Design (RDD) we think of software
1

objects as having responsibilities.

The responsibilities are assigned to classes of objects during object-design.

Object-oriented Design - Responsibility | 13

How does one determine the assignment of responsibilities to
various objects?

Object-oriented Design - Responsibility | 14

How does one determine the assignment of responsibilities to
various objects?

Fe

There is a great variability in responsibility assignment :

» Hence, "good” and ‘poor” designs, “beautiful” and
“ugly” designs, “efficient” and “inefficient” designs.

» Poor choices lead to systems which are fragile and
hard to maintain, understand, reuse, or extend|!

Coupling

Object-oriented Design - Coupling | 15

r .

Coupling measures the strength of
dependence between classes and packages.

P Class C1 is coupled to class C2 if C1 requires
C2 directly or indirectly.

P A class that depends on 2 other classes has a

lower coupling than a class that depends on
8 other classes.

L Coupling is an evaluative r

principle!

Common Forms of Coupling in Java
Object-oriented Design - Coupling | 16

e Type X has an attribute that refers to a type Y instance or type Y

itself

class X{ private Y y = ..}
class X{ private Object o = new Y(); }

e Atype X object calls methods of a type Y object

class Y{f(){;}}
class X{ X(){new Y.f();}}

e Type X has a method that references an instance of type Y

(E.g. by means of a parameter, local variable, return type,...)

class Y{}

class X{ X(y Y){..}}

class X{ Y f(){.}}

class X{ void f(){Object y = new Y();}}

e Type X is a subtype of type Y

class Y{}
class X extends Y{}

Coupling in Java - Exemplified

Class QuitActionis
coupled with:

e .ActionListener
e .ActionEvent
e java. lang.Override

=

e java. lang.System

=

e java. lang.0bject

=

Coupling | 17

Example Source Cod

Coupling
Object-oriented Design - Coupling | 18
e High Coupling
A class with high coupling is undesirable, because...

e changes in related classes may force local changes

e harder to understand in isolation

e harder to reuse because its use requires the inclusion of all classes it
is dependent upon

Coupling

Object-oriented Design - Coupling | 19

e Low Coupling
Low coupling supports design of relatively independent, hence
more reusable, classes.

e Generic classes, with high probability for reuse, should have
especially low coupling

e Very little or no coupling at all is also not desirable

e Central metaphor of OO: a system of connected objects that
communicate via messages

e | ow coupling taken to excess results in active objects that do all the
work

Coupling

Object-oriented Design - Coupling | 20

e Low Coupling
Low coupling supports design of relatively independent, hence
more reusable, classes.

e Generic classes, with high probabilit uld have
espec,tlally lo High CQup\ing to stab\e
e Very little or elements and to

e Central meta lects that

pervasive elements IS

communicate \
seldom a problem.

* | ow coupling s that do all the

work

Coupling

Object-oriented Design - Coupling | 21

e Low Coupling
Low coupling supports design of relatively independent, hence
more reusable, classes.

e Generic classe —Ll_arahability for reuse, should have

* | ow coupling ts that do all the

work

Different kinds of Coupling

Object-oriented Design - Coupling | 22

* Coupling to “stable classes” (e.g., the JDK) is typically no problem

® they don't change

® they don't hamper reuse

* Coupling related to interface is better than coupling related to
classes

® testability is improved
® reuse is facilitated

® they are (often) more stable

Cohesion
Object-oriented Design - Cohesion | 23

‘

rCohesion measures the strength of the
relationship amongst elements of a
class.

All operations and data within a class

-

Cohesion in Java - Exemplified

Analysis of the cohesion of
SimpleLinkedList

® the constructor uses both
fields

® head uses only the field
value

® tail uses only next

e head and tall are simple
getters; they do not mutate
the state

Cohesion |24

A

public class SimpleLinkedList {

Private fingl Object value;
Private fingl SimpleLinkedList next:

public SimpleLinkedList(
Object , SimpleLinkedList
) {

this.valye = y this.next =
}

public Object head() {
return value;:
}

public SimpleLinkedList

tail() {
return next;
s

Example Source Cod}e

Cohesion in Java - Exemplified

Analysis of the cohesion
of ColorableFigure

e LineColoris used
only by its getter and
setter

e fillColorisused

only by its getter and
setter

e lineColor and
fillColor have no
interdependency

Cohesion | 25

A

import java.awt.Color;

abstract class ColorableFigure implements Figure {

private Color lineColor = Color.BLACK;
private Color fillColor = Color.BLACK;

lineColor =

public Color getFil

public void SetFill) {
this.fillColor = ;

Types of Cohesion
Object-oriented Design - Cohesion | 26

e Coincidental
No meaningful relationship amongst elements of a class.

* | ogical cohesion (functional cohesion)
Elements of a class perform one kind of a logical function.
E.g., interfacing with the POST hardware.

e Temporal cohesion
All elements of a class are executed "together”.

Object-oriented Design - Cohesion | 27

To keep design complexity manageable, assign responsibilities
while maintaining high cohesion.

Low Cohesion
Object-oriented Design - Cohesion | 28

® Classes with low cohesion are undesirable, because they are...
® hard to comprehend,

® hard to reuse,

® hard to maintain - easily affected by change

Classes with high cohesion can often be described by a simple sentence.

T ——————— N

Low Cohesion
Object-oriented Design - Cohesion | 29

® Classes with low cohesion...
® often represent a very large-grain abstraction

® have taken responsibility that should have been delegated to other objects

Classes with high cohesion can often be described by a simple sentence.

T ——————— N

Measuring Cohesion

Object-oriented Design - Measuring Cohesion | 30

Lack of Cohesion in Methods (LCOM) measures the
disparateness among methods in a class.

- a high value indicates “poor” cohesion

- a low value indicates "high” cohesiveness

Multiple definitions and extensions exist: e.g., V. Jain, A. Gupta,
Lack of Conceptual Cohesion of Methods : A new alternative to

Lack Of Cohesion of Methods, ISEC, ACM 2018

e -

Measuring Cohesion
Object-oriented Design - Measuring Cohesion | 31

Li, W., & Henry, S., Maintenance metrics for the object oriented
paradigm, 1993, IEEE

LCOM = Number of disjoint sets of local methods.

Each set has one or more local methods of the class,

and any two methods in the set access at least one
attribute of the class in common; the number of
common attributes ranging from 0 to N (where N is

a positive integer)

Commonly, we do not consider

inheritance and constructors.

Object-oriented Design - Measuring Cohesion using LCOM | 32

public class Rectangle extends Figure {

orivate int 1d;
brivate String name; <€ SVANRIE|oIUAEE
orivate Color color;

access the

color attribute

public int getID() { return id; % accesses the id
public int getName() { return name; } attribute

public String toString() {

return "Rectangle(" + 1d + ":"+name+")"; :
1 name attribute

accesses the

accesses the id &
name attribute

Number of disjoint sets: 2

Object-oriented Design - Measuring Cohesion using LCOM | 33

public class Rectangle extends Figure {
private int 1d;
private String name;

private Color color;

public Rectangle(int 1d, String name, Color color) {

this.1d = 1d;
this.name = name; accesses all
this.color = color; attributes

¥

public Color getColor() { return color; }
public void setColor(Color color) { this.color = color; }

public int getID() { return 1id; }
public int getName() { return name; }

public String toString() {

(Therefore, we should generally avoid considering constructors.)

Object-oriented Design - Measuring Cohesion using LCOM | 34
public class Rectangle extends Figure {

orivate int 1d;
orivate String name;
orivate Color color;

access the
color attribute

accesses the

blic 1nt getID return 1id; : :
pupttec tht g O A At id attribute

public int getName() { return name;
accesses the
public String toString() { name attribute

return "Rectangle(” + getID() + “:”+getName()+

accesses nc
attribute

Number of disjoint sets: 4
(LCOM metrics always require a detailed understanding.)

Measuring Cohesion
Object-oriented Design - Measuring Cohesion | 35

B. Henderson-sellers, Object-oriented metrics: measures of

complexity, 1996

Let:

M{(i = 1,...,m)be the set of methods defined by the class

- attributes defined by the class

Aj(j = 1,...,a) be the set of
H(A) be the number of methods that access the attribute
Then:
1 a
. <; zjzlﬂ(A])> —m
LCOM =

1l —m

Object-oriented Design | 36

Design needs principles.

A common pitfall in object-oriented design is the

iInheritance relation.
Object-Oriented Thinking | 37

® Let's assume that we want to extend our library for vector graphic
applications and our library already defines classes for Circles
and Squares.

® Let's assume we want to further evolve our library an

support for Rectangles...

A common pitfall in object-oriented design is the
inheritance relation.

Object-Oriented Thinking | 38

®* Now let's assume we want to further evolve our library and add
support for Rectangles...

® Should Rectangle inherit from Square?

® Should Square inherit from Rectangle?

® |sthere some other solution?

A common pitfall in object-oriented design is the
inheritance relation.

Object-Oriented Thinking | 39

®* Now let's assume we want to further evolve our library and add
support for Rectangles...

* Should Rectangle_ inherit from Square?

" Should Squarg A first test:
® |sthere some

“|s a Rectangle a Square?”

A common pitfall in object-oriented design is the
inheritance relation.

Object-Oriented Thinking | 40

®* Now let's assume we want to further evolve our library and add
support for Rectangles...

* Should-Rectangledinher
® Should Squarg

A first test:

® 11 1
Is there some s a Rectangle a Square?

A common pitfall in object-oriented design is the
inheritance relation.

Object-Oriented Thinking | 41

®* Now let's assume we want to further evolve our library and add
support for Rectangles...

* Should Rectangle-inheritfrom-Sauare?

® Should Square {pherit from Rectangle?

® |sthere somsg

A first test:
“Is a Square a Rectangle”?

Well... yes, but ... how about
a Square's behavior?

A common pitfall in object-oriented design is the
inheritance relation.

Object-Oriented Thinking | 42

®* Now let's assume we want to further evolve our library and add
support for Rectangles...

* Should-Rectangleinheritfrom Sqguare?
* Should Sguareinheritfrom-Rectangle?

® |sthere soms

A first test:
“Is a Square a Rectangle”?

Well... yes, but ... how about
a Square's behavior?

A large number of Design Heuristics and Design

Principles exists that help you to design "better”

programs.
Object-Oriented Design | 43

® Low Coupling

® High Cohesion

® Single Responsibility Principle
®* Don't repeat yourselt

® No cyclic dependencies

Object-oriented Design | 44

L A class should have ov\iv one

reason ko chawnge., '
,

Le. o responsibility is primarily a reason for change.

Agile Software Development; Robert C. Martin; Prentice Hall, 2003

The Single Responsibility Principle

Example: a Rectangle Class

The Single Responsibility Principle Object-oriented Design | 45
Rectangle
Computational | _ o :
Geo_met_ry > +draw() < A?o:oalliocglfi?)ln
Application +area() : double
T —— |
—
| |
| I
I
— V |
|
Gu [€-—-—--——-—----

Does the Rectangle class have

a single responsibility or does{‘?

. . TR
it have multiple responsibilities

Example: a Rectangle Class
The Single Responsibility Principle Object-oriented Design | 46

* The Rectangle class has multiple responsibilities:
e Calculating the size of a rectangle; a mathematical model
* To render a rectangle on the screen; a GUI related functionality

® Do you see any problems?

Rectangle
Computational L L |
Geo_met.ry > +draw() < A(;I;EI’;I;?)L}
Application +area() : double
T — |
—

: |

| I

I

— V |

I

Gu (€T -——-—--—---

Example: a Rectangle Class

The Single Responsibility Principle Object-oriented Design | 47

Rectangle
Computational L L |
Geometry = draw) < A%ﬁ."!;'f.i'n
Application +area() : double
" |
—

: .

| I

I

— v |

I

GU [€T—T—----—--

Problems due to having multiple responsibilities:

® Reuse of the Rectangle class (e.g. in a math package) is hindered due to the

dependency on the GUI package
(GUI classes have to be deployed along with the Rectangle class)

® A change in the Graphical Application that results in a change of Rectangle requires
that we retest and redeploy the Rectangle class in the context of the Computational

Geometry Application

Example: Rectangle classes with single responsibilities

The Single Responsibility Principle Object-oriented Design | 48
Computational .
Gepometry Graphical ~ F—===—=-= 9
Application Application l
|
|
—
! |
: ' |
\4 ' !
Geometric Rect\gngle 4
Rectangle
: < "7 -—-=> GUl
+area() : double +draw()

The solution is to separate the functionality for drawing a rectangle and the
functionality for doing calculations are separated.

Coupling? Cohesion?

Example: Handling Persistence

The Single Responsibility Principle Object-oriented Design | 49
The functionality for drawing a rectangle and the functionality for doing
calculations are separated.

Employee

Persistence < — —
Subsystem

+CalculatePay()
+Store(...)

Do we need to change the Employee class?

Example: Handling Persistence

The Single Responsibility Principle Object-oriented Design_| 50
The functionality for drawing a rectangle and the functionality for doing
calculations are separated.

Employee

Persistence < — —
Subsystem

+CalculatePay()
+Store(...)

Two responsibilities:
® Business functionality

® Persistence related functionality

Do we need to change the Employee class?

Orthogonality

Object-oriented Design | 51

Two or more things are orthogonal if changes in one do not affect any

of the others; e.g. it a change to the database code does not affect your

GUI code, both are said to be orthogonal. A

s

if z clhhanges,

X and y remain
Wd changed
//

/\J
/ i

Andrew Hunt and David Thomas; The Pragmatic Programmer;
Addison-Wesley, 2000

Design Heuristics

TECHNISCHE
UNIVERSITAT
DARMSTADT

e J. Riel; Object-Oriented Design Heuristics; Addison-
Wesley, 1996

Design Heuristics
Design Heuristics | 53

* Design Heuristics help to answer the question:
"Is it good, bad, or somewhere in between?”

e Object-Oriented Design Heuristics offer insights into object-
oriented design improvement

e The following guidelines are language-independent and allow to
rate the integrity of a software design

® Heuristics are not hard and fast rules; they are meant to serve as

warning mechanisms which allows the flexibility of ignoring the
heuristic as necessary

* Many heuristics are small tweakings on a design and are local in
nature

A single violation rarely causes major ramifications on the entire application.

Two areas where the object-oriented paradigm can

drive design in dangerous directions...
Design Heuristics |54

® ...poorly distributed systems intelligence
The God Class Problem

® ...creation of too many classes for the size of the design problem

Proliferation of Classes

(Proliteration =dt. starke Vermehrung)

A Very Basic Heuristic
Design Heuristics | 55
All data in a base class should be Private;
do not use non-Private data.

Define (Protecte&) accessor methods instead.

If you violate this heuristic your design tends to be more fragile.

B i ‘

A Very Basic Heuristic

Design Heuristics | 56

All data in a base class should be Priva’te;

do not use non~Private data.

public class Line {

Deﬁnc (Protectecb accessor methocls insteaci

// p and v are package visible to enable eff1c1ent access

/*package visiblex/ Point p;
/*package visiblex/ Vector v;

public boolean intersects(Line 1) {..}
public boolean contains(Point p) {..}

Line 11 :
Line 12)

if (11l.v.equals(12.v)) {..}

;Some Code in the same

QpackagethatusesLine

1mp|ementat|on of aLine |

.,,fclass as part of a math

I|brary

......

B e WP _-\’A'-“*-«v*"\—N)

———— o~ ———

{objects.

A Very Basic Heuristic
Design Heuristics | 57

All data in a base class should be Private;
do not use non~Private data.

Define (ProtectcA) accessor methods instead.

public class Line A
/*package_visiblex/ Poin !
(/*package visiblex/ Point p2;
PUBTIC boolean intersects(Line 1) {..} ,
public boolean contains(Point p) {..} {implementz™ — —* Yina

} "R The public interface

remains stable - just
implementation details
are chanaged.

| Now, assume the followmg

change to the

\
3
\
’\
\

Line 11
Line 12 - .l
/ Ch Lf _both lines Frrallel
Kif (11 V. equals(lz v)) { J)

e

~The c:ha ng e breaks our .

code.

......

A Very Basic Heuristic
Design Heuristics | 58

All data in a base class should be Private;

ClO NOt Usc ﬂOﬂ~PriVat€ clata.

Define (ProtectcA) accessor methods instead.

public class Line A
private Point p;
private Vector v;
public boolean intersects(Line 1) {..}
public boolean contains(Point p) {..}
protected Vector getVector() { return v; };

¥

Hz: g : : Sﬂbd-rﬁétode in the sarﬁé“'{"

if (11.getVector().equals(12.getVector())) {..} ‘ %
fobjects. __J

B T R s T

The God Class Problem

The God Class Problem | 59

Distribute system inte“igence as Lmhcormlg as Possible, that is, the

top-level classes in a desigﬂ should share the work unhcormlg.

Beware 01C classes tha’t have many accessor metlﬂods defined in

their Public interface. Having many implies t

nat related clata ancl

behavior are not ‘<<—3Pt N one

:)lace.

Beware of classes that have too much noncommunicating bel’wavior,

that IS, methods that operate on a proper

members O‘F a C!aSS.

subset of the data

God classes often exhibit much noncommunicating behavior-.

The Problem of Accessor Methods
The God Class Problem - Behavioral Form | 60

Point

+getX()
+setX(int)
+getY()
+setY(int)

* The class Point has accessor operations in the public intertace.

Are there any problems with this design of Point, you can think
of?

* |s Point eventually giving too much implementation details away
to clients?

The Problem of Accessor Methods

The God Class Problem - Behavioral Form | 61

Point

+getX()
+setX(int)
+getY()
+setY(int)

®* The class Point has accessor operations in the public interface.
Are there any problems with this design of Point, you can think of?

® |s Point eventually giving too much implementation details away to clients?

The answer to this question is:

“No, accessor methods do not necessarily expose implementation details.”

W

The Problem of Accessor Methods
The God Class Problem - Behavioral Form | 62

Point

+getX()
+setX(int)
+getY()
+setY(int)

e Accessor methods indicate poor encapsulation of related data
and behavior;someone is getting the x- and y-values of Point
objects to do something with them - executing behavior that is
related to points - that the class Point is not providing

* Often the client that is using accessor methods is a god class

capturlng Centrallzed control that requwes data from the mmdless

The Problem of Accessor Methods
The God Class Problem - Behavioral Form | 63

public class Line {
private Point p;
private Vector v; ——— e
public boolean intersects(Line 1) {..} Reconsider the i

public boolean contains(Point p) {..} 7 \
L;n§<jas& s

protected Vector getVector() {return v;};
public boolean isParallel(Line 1) {..};

Some code in the |
Line 11 ’
Line 12)
// check if both lines are parallel
if (11.isParallel(12)) {..}

same package
thatuses Line |}

obJects

Two Reasonable Explanations For the Need of Accessor

Methods...
The God Class Problem - Behavioral Form | 64

® ... aclass performing the gets and sets is implementing a policy
(policy = dt. Vertahren(-sweise))

® ...oritisinthe interface portion of a system consisting of an

object-oriented model and a user interface
(The Ul layer needs to be able to get the data to visualize it.)

Implementing Policies Between Two or More Classes
Example from the Course-scheduling Domain

Student

Captures static information
about students, e.g., name,
identification number, list of

courses (s)he has taken, etc.

The God Class Problem - Behavioral Form | 65

Course

Captures static information
about the course objects, e.g.,
the course number, description,
duration, minimum and
maximum number of students,

list of prerequisites, etc.

Implementing Policies Between Two or More Classes

Example from the Course-scheduling Domain
The God Class Problem - Behavioral Form | 66

CourseOffering

Captures static and dynamic
information related to a
particular section of a given
course, e.g., the course being
offered, the room and
schedule, instructor, list of

attendees, etc.

Implementing Policies Between Two or More Classes

(here: addStudents)

Example from the Course-scheduling Domain
The God Class Problem - Behavioral Form | 67

addStudent(s) {
2: checkPrereq(c) « 1. ¢ = getCourses() -

| :Course :CourseOffering s:Student |

First design for checking the prerequisites of students

Implementing Policies Between Two or More Classes

Example from the Course-scheduling Domain
The God Class Problem - Behavioral Form | 68

addStudent(s) {

2: checkPrereq(c) « 1: c = getCourses() —»

[:Course | {_:CourseOffering | {_s:Student |
®
addStudent(s) |
1: p = getPrereq() « 2: check(p) —»
| :Course P~ 9 k. :CourseOffering i s:Student |

Second design for checking the prerequisites of students

Implementing Policies Between Two or More Classes

Example from the Course-scheduling Domain
The God Class Problem - Behavioral Form | 69

addStudent(s) {

2: checkPrereq(c) « 1: c = getCourses() —»

:Course |_:CourseOffering | s:Student
addStudent(s) {
1: p = getPrereq() « 2: check(p) =
:Course P=9 d | :CourseOffering | P s:Student

addStudent(s) {
1: p = getPrereq() « 2: c = getCourses() -

| :Course :CourseOffering | s:Student |
‘ ‘ The policy is implemented

3: check(p,c) «

by course oftering.

Third design for checking the prerequisites of students

Implementing Policies Between Two or More Classes.

Example from the Course-scheduling Domain
The God Class Problem - Behavioral Form | 70

addStudent(s) {
2: checkPrereq(c) «

| i 1: ¢ = getCourses() —»
:Course I :CourseOfferlng_} [s:Student

addStudent(s) {
1: p = getPrereq() «

i 2: check(p) =
:Course I :CourseOffermg_} s:Student

addStudent(s) 1

1: p = getPrereq() « | 2: ¢ = getCourses() =
| :Course P=9 a | :CourseOffering | 9 s:Student |

3: check(p,c) «

®* What do you think of these three designs?

(Discuss the pros and cons - regarding the implementation of the policy -
with your fellow students.)

The God Class Problem - Behavioral Form Summary
The God Class Problem - Behavioral Form | 71

* [n general, always try to model the real world

(Low representational gap facilitates maintenance and evolution.)

But modeling the real world is not as important as the other heuristics.
(E.g., in the real world a room does not exhibit any behavior, but for a
heating system it is imaginable to assign the responsibility for heating up
or cooling down a room to a corresponding class.)

e Basically, a god class is a class that does too much
(Behavioral Form)

e By systematically applying the principles that we have studied
previously, the creation of god classes becomes less likely

Classes That Model the Roles an Object Plays
The Proliferation of Classes | 72

Be sure that the abstractions that you model are classes and not
simply the roles objects play.)

—)

Classes That Model the Roles an Object Plays
The Proliferation of Classes | 73

Variant A Variant B

class Person {..}
class Father extends Person {..}
class Mother extends Person {..}

class Person {..}

main () { main () {
Father f = new Father(..); Person father = new Person(..);
Mother m = new Mother(..); Person mother = new Person(..);
3 3

e \Whether to choose Variant A or B depends on the domain you are
modeling; i.e. whether Mother and Father exhibit different behavior

e Before creating new classes, be sure the behavior is truly different and that
you do not have a situation where each role is using a subset of Person
functionality

Classes That Model the Roles an Object Plays

The Proliferation of Classes | 74

®* What do you think of the following design?

Customer
{abstract}

MaleCustomer

FemaleCustomer

Which question do you have to ask yourself to decide if such a design makes

sense?

Summary

TECHNISCHE
UNIVERSITAT
DARMSTADT

Goal of the Lecture | 76

The goal of this lecture is to enable you to

systematically carry out small(er) software projects
that produce quality software.

® Always assign responsibilities to classes such that the coupling is as low as possible {,

the cohesion is as high as possible T and the representational gap is as minimal as

possible {.

® Coupling and cohesion are evaluative principles to help you judge OO designs.
® Design heuristics are not hard rules, but help you to identify weaknesses in your code

to become aware of potential (future) issues.

Goal of the Lecture | 77

®* The goal of this lecture is to enable you to systematically carry
out small(er) commercial or open-source projects.

]

Software Project Management

j il e
' -
ol
-
\

Start of an Iteration

Project
End

B Requirements Management
B Domain Modeling

B Testing
B Coding

