Dr. Michael Eichberg
Software Engineering

Department of Computer Science

Technische Universitat Darmstadt

Software Engineering

Enforcing Singularity

For details see Gamma et al. in “Design Patterns”

%7h TECHNISCHE
{c&‘//é UNIVERSITAT
Y9 DARMSTADT




Enforcing Singularity

Example / Motivation
The GoF Design Patterns | 2

® |[n some cases a mechanism is required to enforce singularity of
objects; i.e. it is necessary to enforce that there exists at most
one instance of a class at runtime.

For example, ...
® in a system there should be only one printer spooler,

® there should be only one class to handle interactions with the

database.
® Two patterns for enforcing Singularity:
® Singleton

® NMonostate



Enforcing Singularity

Example / Motivation
The GoF Design Patterns | 3

® |[n some cases a mechanism is required to enforce singularity of
objects; i.e. it is necessary to enforce that there exists at most

one instance of a class at runtime.

FOr exafer =N

® N asy Beware: Often it is best to just create one

o there, [NStance of e.an.c.)blj.ect.(uyr\g the ;onstruct}c:.r) th the
. at program Initialization time and to use tnis

datab’ PToS ,
| object.
® Jwo pat |
e —— ——— — ©

® Singleton

® NMonostate



The Singleton Design Pattern
Intent and Structure

Intent

The GoF Design Patterns |

Ensure a class only has one instance, and provide a global point of
access to It.

Structure

{

}

«method» k

return uniquelnstance;

| ~ —@ static instance()

Singleton
- static uniquelnstance

4



The Singleton Design Pattern
Implementation

The GoF Design Patterns | 5

«method»

{ Singleton
return uniquelnstance; - static uniquelnstance
} = @ static instance()

public class Singleton {

private static Singleton thelnstance = null;

. . Th t t 1 h |d,, b
private Singleton(); e cc?ns ructor “shou e
private or protected.

public static Singleton instance() {
1f (theInstance == null)
thelnstance = new Singleton();
return thelInstance;

The implementation is not
thread safe.
(Recall the discussion of the

! double-checked locking

¥

idiom.)




The Singleton Design Pattern

Benefits

® Cross platform
Using appropriate middleware,
Singleton can be extended to
work across many JVMs.

* Applicable to any class

® Can be created through derivation
Given a class, you can create a
subclass that is a Singleton.

Costs

The GoF Design Patterns |

® Lazy creation
(Controlled access to sole
Instance.)

If the singleton is never used, it is
never created.

® Destruction is undefined

® Not inherited
A class derived from a singleton is
not a singleton.

®* Nontransparent
Users of a Singleton know that
they are using a Singleton.

6



The GoF Design Patterns | 7

“Software ciesign Patterns caPture tried and suc-

cesstul design solutions. Among different views

on design patterns s that theg are created to
compensate for the clesign shortfalls in pro-
gramming languages - that is, clesign patterns are
needed when Programming |anguages cannot do

thejob N a straightgorwarci way. N

Liping Zhao; Patterns, Symmetry, and Symmetry Breaking;
Communications of the ACM, March 2008, Vol. 51, No. 3



Patterns as a motivation for language features.

Singleton objects in the Scala Programming Language
(http://www.scala-lang.org/)

The GoF Design Patterns | 8

“The same program” implemented in two programming languages.

1 public class Hello {
2
3 private static Hello hello;
4
5 private Hello(){ }
6
1 object Hello { 7 public static synchronized Hello instance() {
8 if (hello == null) {
3 } 9 hello = new Hello();
10 }
11 return hello;
12 }
13
15 }

=Scala

Java


http://www.scala-lang.org/

The Monostate Design Pattern
Intent and Implementation

Agile Software Development - Principles, Patterns and Practices | 9

Intent

Make all objects of the same type behave as though they
were a single object

Implementation

» Make all fields static

P Methods are not static

public class X {
public X(O{..}

private static boolean x = ..;

public boolean 1sX() { return x; }
¥



The Monostate Design Pattern

Benefits Costs
The GoF Design Patterns | 10
® Transparent ®* No conversion
The user does not need to know that the A normal class cannot be converted into
object is Monostate. a Monostate.
Destruction is well-defined. * Efficiency
® Derivability A Monostate may go through many
Derivatives of a Monostate are creations and destructions because it is
Monostates; derivatives of a Monostate a real object.
are part of the same Monostate. ® Prasence
® Polymorphism The variables of a Monostate take up
Since the methods of a Monostate are space, even if the Monostate is never
not static, they can be overridden in a used.

derivative. Derivatives can offer different * Platform local

behavior over the same set of static
variables.

A Monostate cannot work across several
JVM instances or across several
platforms.



Singleton vs. Monostate
Design Pattern

Singleton is best used when you
have an existing class that you want
to constrain through der-ivation, and
you dont mind that everyone will
have to call the instance() method to
galn ac-cess.

structure!

Singleton is about | Monostate is about

| behavior!

Design Patterns | 11

Monostate is best used when you
want the singular nature of the class
to be transparent to the users, or

when you want to employ
polymorphic derivatives of the
single object.




