
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

Enforcing Singularity
For details see Gamma et al. in “Design Patterns”

|The GoF Design Patterns

Enforcing Singularity
Example / Motivation

�2

• In some cases a mechanism is required to enforce singularity of
objects; i.e. it is necessary to enforce that there exists at most
one instance of a class at runtime.  
For example, …

• in a system there should be only one printer spooler,

• there should be only one class to handle interactions with the
database.

• Two patterns for enforcing Singularity:

• Singleton

• Monostate

|

• In some cases a mechanism is required to enforce singularity of
objects; i.e. it is necessary to enforce that there exists at most
one instance of a class at runtime.  
For example, …

• in a system there should be only one printer spooler,

• there should be only one class to handle interactions with the
database.

• Two patterns for enforcing Singularity:

• Singleton

• Monostate

The GoF Design Patterns

Enforcing Singularity
Example / Motivation

�3

Beware: Often it is best to just create one
instance of an object (using the constructor)
at program initialization time and to use this

object.

|The GoF Design Patterns

The Singleton Design Pattern
Intent and Structure

�4

Intent
Ensure a class only has one instance, and provide a global point of
access to it.

Structure

static instance()
- static uniqueInstance

Singleton
«method»
{

return uniqueInstance;
}

|The GoF Design Patterns

The Singleton Design Pattern
Implementation

�5

static instance()
- static uniqueInstance

Singleton
«method»
{

return uniqueInstance;
}

public class Singleton {

private static Singleton theInstance = null;

private Singleton();

public static Singleton instance() {
if (theInstance == null)

theInstance = new Singleton();
return theInstance;

}
}

The constructor “should” be
private or protected.

The implementation is not
thread safe.

(Recall the discussion of the
double-checked locking

idiom.)

|The GoF Design Patterns

The Singleton Design Pattern

Benefits Costs
�6

• Cross platform  
Using appropriate middleware,
Singleton can be extended to
work across many JVMs.

• Applicable to any class

• Can be created through derivation 
Given a class, you can create a
subclass that is a Singleton.

• Lazy creation 
(Controlled access to sole
instance.) 
If the singleton is never used, it is
never created. 

• Destruction is undefined

• Not inherited 
A class derived from a singleton is
not a singleton.

• Nontransparent 
Users of a Singleton know that
they are using a Singleton.

|The GoF Design Patterns �7

“Software design patterns capture tried and suc-
cessful design solutions. Among different views
on design patterns is that they are created to
compensate for the design shortfalls in pro-
gramming languages - that is, design patterns are
needed when programming languages cannot do
the job in a straightforward way….”

Liping Zhao; Patterns, Symmetry, and Symmetry Breaking;  
Communications of the ACM, March 2008, Vol. 51, No. 3

|The GoF Design Patterns

Patterns as a motivation for language features.
Singleton objects in the Scala Programming Language  
(http://www.scala-lang.org/)

�8

 1 public class Hello {
 2
 3 private static Hello hello;
 4
 5 private Hello(){ }
 6
 7 public static synchronized Hello instance() {
 8 if (hello == null) {
 9 hello = new Hello();
10 }
11 return hello;
12 }
13
14 // methods
15 }

 1 object Hello {
 2 // methods
 3 }

Java

“The same program” implemented in two programming languages.

http://www.scala-lang.org/

|Agile Software Development - Principles, Patterns and Practices

The Monostate Design Pattern
Intent and Implementation

�9

Intent
Make all objects of the same type behave as though they
were a single object

Implementation
▶ Make all fields static
▶ Methods are not static

public class X {
public X(){…}

private static boolean x = …;

public boolean isX() { return x; }
}

|The GoF Design Patterns

The Monostate Design Pattern

Benefits Costs
�10

• Transparent 
The user does not need to know that the
object is Monostate.  
Destruction is well-defined.

• Derivability 
Derivatives of a Monostate are
Monostates; derivatives of a Monostate
are part of the same Monostate.

• Polymorphism 
Since the methods of a Monostate are
not static, they can be overridden in a
derivative. Derivatives can offer different
behavior over the same set of static
variables. 

• No conversion 
A normal class cannot be converted into
a Monostate.

• Efficiency 
A Monostate may go through many
creations and destructions because it is
a real object.

• Presence 
The variables of a Monostate take up
space, even if the Monostate is never
used.

• Platform local 
A Monostate cannot work across several
JVM instances or across several
platforms.

|Design Patterns

 Singleton vs. Monostate
Design Pattern

�11

Singleton is best used when you
have an existing class that you want
to constrain through der-ivation, and
you don’t mind that everyone will
have to call the instance() method to
gain ac-cess. 

Monostate is best used when you
want the singular nature of the class
to be transparent to the users, or
w h e n y o u w a n t t o e m p l o y
polymorphic derivatives of the
single object.

Singleton is about
structure!

Monostate is about
behavior!

