
Dr. Michael Eichberg
Software Engineering
Department of Computer Science
Technische Universität Darmstadt

Software Engineering

The Observer
Design Pattern
For details see Gamma et al. in “Design Patterns”

Observer Design Pattern

Intent  
Define a one-to-many dependency between
objects so that when an object changes it’s state,
all its dependents are notified and updated
automatically.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

�3

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

• We want to...
• avoid the decision between Push or Pull mode observers
• better support observers interested only in specific events

�4

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

Parts Common to Potential Instantiations of the Pattern
1. The existence of Subject and Observer roles  

(i.e. the fact that some classes act as Observers and some as Subjects)
2. Maintenance of a mapping from Subjects to Observers
3. The general update logic: Subject changes trigger Observer

updates

Parts Specific to Each Instantiation of the Pattern
4. Which classes can be Subjects and which can be Observers
5. A set of changes of interest on the Subjects that trigger updates on

the Observers
6. The specific means of updating each kind of Observer when the

update logic requires it

�5

Will be
implemented in a

reusable
ObserverProtocol

aspect.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

public abstract aspect ObserverProtocol {

// Realization of the Roles of the Observer Design Pattern
protected interface Subject { }
protected interface Observer { }

...
}

�6

The part
common to

instantiations
of the pattern.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

public abstract aspect ObserverProtocol {
...
// Mapping and Managing Subjects and Observers
private WeakHashMap<Subject, List<Observer>> perSubjectObservers;
protected List<Observer> getObservers(Subject s) {

if (perSubjectObservers == null)
perSubjectObservers = new WeakHashMap<Subject, List<Observer>>();

List<Observer> observers = perSubjectObservers.get(s);
if (observers == null) {

observers = new LinkedList<Observer>();
perSubjectObservers.put(s, observers);

}
return observers;

}
public void addObserver(Subject s,Observer o){

getObservers(s).add(o);
}
public void removeObserver(Subject s,Observer o){

getObservers(s).remove(o);
}

...

�7

The part
common to

instantiations
of the pattern.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ

public abstract aspect ObserverProtocol {
...
// Notification related functionality
abstract protected pointcut subjectChange(Subject s);

abstract protected void updateObserver(Subject s, Observer o);

after(Subject s): subjectChange(s) {
Iterator<Observer> iter = getObservers(s).iterator();
while (iter.hasNext()) {

updateObserver(s, iter.next());
}

}
}

�8

The part
common to

instantiations
of the pattern.

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Example

�9

FigureElement

setX()
setY()
setColor()

Point

setP1()
setP2()
setColor()

Line

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Example

Task: Observe Changes of the Color
public aspect ColorObserver extends ObserverProtocol {

declare parents: Point implements Subject;
declare parents: Line implements Subject;
declare parents: Screen implements Observer;

protected pointcut subjectChange(Subject s):
(call(void Point.setColor(Color)) ||
 call(void Line.setColor(Color))) && target(s);

protected void updateObserver(Subject s, Observer o) {
((Screen)o).display("Color change.");

}
}

To create a mapping between an Observer and a Subject:
ColorObserver.aspectOf().addObserver(P, S);

�10

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Assessment

• Locality  
All code that implements the Observer pattern is in the abstract
and concrete observer aspects, none of it is in the participant
classes; there is no coupling between the participants. 
Potential changes to each Observer pattern instance are confined
to one place.

• Reusability  
The core pattern code is abstracted and reusable. The
implementation of ObserverProtocol is generalizing the overall
pattern behavior. The abstract aspect can be reused and shared
across multiple Observer pattern instances.

�11

|Rethinking The GoF Design Patterns

The Observer Design Pattern
Alternative Implementation using AspectJ - Assessment

• Composition transparency 
Because a pattern participant’s implementation is not coupled to
the pattern, if a Subject or Observer takes part in multiple
observing relationships their code does not become more
complicated and the pattern instances are not confused.  
Each instance of the pattern can be reasoned about
independently.

• (Un)pluggability 
It is possible to switch between using a pattern and not using it in
the system.

�12

|Summary

Programming Languages ⟺ Design Pattern

Observer Design Pattern

How it is implemented depends on the available programming
language mechanisms; the consequences may also change!

�13

