
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Programming Languages and Design Principles

Summer Semester 2015

In the following, we will discuss the development of programming languages as a means to improve
their ability to capture the software design at ever increasing abstraction levels. Or, from another point
of view, we discuss why advances in programming language technology are driven by the need to
make programming languages capable of capturing higher-level designs.

Making Code Look
Like Design

2

2-PL-Design-Style.key - 26. April 2015

“Designing” with Pseudo-Assembler

3

What does the following program do?

i = 1
TEST: if i < 4

then goto BODY
else goto END

BODY: print i
i = i + 1
goto TEST

END:

“Designing” with Pseudo-Assembler

4

What does the following program do?

i = 1
LOOP: print i

i = i + 1
if i < 4 goto LOOP

END:

Though both programs just print out "123" the second one is easier to read and comprehend. It has a
better style:

• Clear structure

• No crossing gotos

• Better names

• Code structure closer to what we want to express.  

"Print out i, i smaller than 4“

Hence, the second variant, though functionally identical, is easier to understand, debug, change.

2-PL-Design-Style.key - 26. April 2015

Style can only be
recommended, not

enforced!

5

Designing with Structured Programming Languages

6

What does the following program do?

i = 1
while (i < 4) {

print(i)
i = i + 1

}

Style
 gets

 en
for

ce
d!

In the 1960th programming language support for better structuring of code emerged. `Goto`s were
replaced by loops (`while`) and conditionals (`if`/`else`). Furthermore, procedures were introduced to
support user-defined abstractions.

New words, new grammars, new abstractions enable developers to directly express looping/
conditional computations, instead of emulating them by jumps. Using a – by then – modern
structured programming language, it was no longer possible to write crossing `goto`s!

2-PL-Design-Style.key - 26. April 2015

Better languages, More challenging tasks…

7

A simple image browser with structured programming

Code for Image Browser Structured into Procedures

8

Try to identify which method calls which method!

main () {
draw_label(“Art Browser”)
 m = radio_menu(
 {“Whale”, “Eagle”,
 “Dogfish”})
 q = button_menu({“Quit”})
 while (!check_buttons(q)) {
 n = check_buttons(m)
 draw_image(n)
 }
}

set_x (x) {
 current_x = x
}

draw_circle (x, y, r) {
 %%primitive_oval(x, y, 1, r)
}

set_y (y) {
 current_y = y
}

radio_menu(labels) {
 i = 0
 while (i < labels.size) {
 radio_button(i)
 draw_label(labels[i])
 set_y(get_y()
 + RADIO_BUTTON_H)
 i++
 }
}

radio_button (n) {
 draw_circle(get_x(),
 get_y(), 3)
}

get_x () {
 return current_x
}

get_y () {
 return current_y
}

draw_image (img) {
 w = img.width
 h = img.height
 do (r = 0; r < h; r++)
 do (c = 0; c < w; c++)
 WINDOW[r][c] = img[r][c]
}

button_menu(labels) {
 i = 0
 while (i < labels.size) {
 draw_label(labels[i])
 set_y(get_y()
 + BUTTON_H)
 i++
 }
}

draw_label (string) {
 w = calculate_width(string)
 print(string, WINDOW_PORT)
 set_x(get_x() + w)
}

In this case, the code is structured, but the procedures are not! It is hard, if not nearly impossible, to
maintain or even extend this code.

2-PL-Design-Style.key - 26. April 2015

Structured Programming
with Style

gui_radio_button(n)

gui_button_menu(labels)

gui_radio_menu(labels)

graphic_draw_image (img)

graphic_draw_circle (x, y, r)

graphic_draw_label (string)

state_set_y (y)

state_get_y ()

state_set_x (x)

state_get_x ()

main()

Group procedures by the functionality they implement and the state they access, e.g. by naming
conventions …

Advantages:

• The code is closer to what we want to express.  
"main calls gui, gui calls graphic to draw, …“

• The code is easier to understand, debug and change.

Designing with Modular Programming Languages

10

module gui {
 exports:
 radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)
}

Modular programming introduced modules, higher-level units/modules introduce higher-level
abstractions! One can handle a whole module as if it was its interface.

Programming language mechanisms for supporting information hiding: interface hides module
internals.

2-PL-Design-Style.key - 26. April 2015

Module-based Abstraction

11

gui:
radio_menu(labels)
 button_menu(labels)
 check_buttons(menu)

image_browser

graphics

Abstraction enables us to:

	 •	 look at the overall structure of the system (architectural thinking).

	 •	 zoom in on individual units as needed

	 •	 with more or less details

Hence, abstraction is the key to managing complexity.

Abstraction mechanisms
enable us to code and
design simultaneously!

12

"Write what you mean."

• Makes the code easier to understand, debug and change.

• Allows structured organization of code.

• Ability to ignore details. 

Makes the code closer to what we want to express.

2-PL-Design-Style.key - 26. April 2015

–Einstein

"The significant problems we face cannot be solved at the same
level of thinking we were at when we created them."

13

Let’s “develop” application families with sophisticated GUIs with
uniform look and feel with modular programming…

14

Modeling variability with modular programming languages appeared complex…

2-PL-Design-Style.key - 26. April 2015

Designing with Object-Oriented Programming Languages

• classes

• inheritance

• subtype polymorphism

15

Object-oriented programming languages introduce new
abstraction mechanisms

(Still)
 Dom

ina
tin

g

Prog
ram

ming
 Para

digm

The roots of object-oriented programming languages are in the
sixties.

16

Allan Kay,
Smalltalk 70 - 80

Dahl and Nygaard,
Simula 64, 68

• Object-oriented languages are popular because they make it easier to design software and
program at the same time.

• They allow us to more directly express high level information about design components
abstracting over differences of their variants.

• Make it easier to produce the design, and easier to refine it later.

• With stronger type checking, they also help the process of detecting design errors.

• Result in a more robust design, in essence a better engineered design.

2-PL-Design-Style.key - 26. April 2015

–Jack Reeves, To Code is to Design, C++ Report 1992

 […] improvements in programming techniques and
programming languages in particular are overwhelmingly more
important than anything else in the software business […]

[…] programmers are interested in design […] when more
expressive programming languages become available, software
developers will adopt them.

17

Designing with Functional, Object-Oriented Programming
Languages

18

case class Person(id : Int)

var ids = 0
def nextId() : Int = { val id = ids ; ids+= 1; id }

Array.fill(2){ new Person(nextId()) }

=> Array[Person] = Array(Person(0), Person(1))

Result:

Code:

Fill an array with n Person objects where each Person has a unique id.

By fusing object-oriented and functional programming we are provided with further means to raise
our abstraction level. This enables us to better express our intention.

2-PL-Design-Style.key - 26. April 2015

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax

19

Creating an abstraction to express that we want to repeat something n
times.

def repeat[T: scala.reflect.ClassTag](times: Int)(f: ⇒ T): Array[T] = {  

 val array = new Array[T](times)
 var i = 0
 while (i < times) { array(i) = f; i += 1 }
 array
}

Now, we can express that we want to read in two values from the
command line using our new control-abstraction.

val values = repeat(2) { System.in.read() }

By fusing object-oriented and functional programming and also providing a more flexible syntax we
are provided with further means to raise our abstraction level. In this example, we demonstrate how
to define our own “control-abstraction”! Defining a new control structure like this is not reasonably
possible in Java 7 or older. In Java >= 8; the situation gets better due to closures. However, the
syntax still doesn’t look like a native structure.

However, with power comes responsibility and it is easy to overdo!

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax vs. Explicit Language Features

20

val tempFile = File.createTempFile("demo", "tmp");
process(new java.io.FileOutputStream(tempFile)) { fout ⇒ 
 fout.write(42);
}

Using Scala’s language features enables us to define a new control
structure that resembles Java’s try-with-resources statement.

def process[C <: Closeable, T](closable: C)(r: C ⇒ T): T = {
 try { r(closable) }
 finally { if (closable != null) closable.close() }
}

File tempFile = File.createTempFile("demo", "tmp");
try (FileOutputStream fout = new FileOutputStream(tempFile)) {
fout.write(42);

}

Java’s native try-with-resources statement

Java 7’s try-with-resources statement is more powerful/safe. However, it is an explicit language
feature that was only added years after its need was identified.

2-PL-Design-Style.key - 26. April 2015

Programming Languages are not a Panacea

21

• Accessibility of object-oriented programming drives more complex designs!

• Programming languages are powerful tools, but cannot and will never guarantee good designs.

• Programming always needs to be done properly to result in good code.

• Human creativity remains the main factor.

We need good style to cope with complexity!

22

Help is provided through established practices and techniques, design patterns and principles.

Good style can only be recommended, not enforced!

Eventually style rules will have to be turned into language features to be really effective.

2-PL-Design-Style.key - 26. April 2015

General Design Principles

• Keep it short and simple
• Don't repeat yourself (also just called "DRY-Principle")
• High Cohesion
• Low Coupling
• No cyclic dependencies
• Make it testable
• Open-closed Design Principle
• Make it explicit/use Code
• Keep related things together
• Keep simple things simple
• Common-reuse/Common-closure/Reuse-release principles

23

The following principles apply at various abstraction levels!

Object-Oriented Design Principles

• Liskov Substitution Principle

• Responsibility Driven Design

• …

24

2-PL-Design-Style.key - 26. April 2015

Design Constraints

• Conway's Law 
A system's design is constrained by the organization's
communication structure.

25

2-PL-Design-Style.key - 26. April 2015

