
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Single Responsibility Principle

Summer Semester 2015

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Single Responsibility Principle

A class should have only one reason to change.

2

What do you think of the following design?

3

Observation
• Rectangle provides a method to draw rectangle shapes on the screen. For that, Rectangle uses GUI

to implement draw().
• GeometricApplication is a package for geometrical computations, which also uses Rectangle

(area()).
• GeometricApplication depends on GUI (GUI has to be deployed along with Rectangle)

even if it only needs the geometrical functions of rectangles.
Evaluation
• Rectangle has multiple responsibilities: (1) Geometrics of rectangles: area() and (2) Drawing of

rectangles: draw()
• Rectangle has low cohesion!
• It is not a representation of a coherent concept, but a point to bundle needed functionality without

consideration of their cohesion. Geometrics and drawing do not naturally belong together.
Problems
• Rectangle has multiple reasons to change.
• If drawing functionality changes in the future, we need to retest and redeploy Rectangle in context of

GeometricalApplication!

+area() : double

Rectangle

Graphical
Application

Computational
Geometry
Application

GUI
+draw()

DrawableRectangle

A Single-Responsibility Compliant Design

4

Assessment
• Split responsibilities:

• Rectangle models geometric properties of rectangles.
• DrawableRectangle models visual properties of graphical rectangles.

• Computational Geometry Application uses only Rectangle. It only depends on the geometrical
aspects.

• Graphical Application uses DrawableRectangle and indirectly Rectangle. It needs both aspects
and therefore depends on both.

• Both classes can be reused easily!  
Only changes to the responsibilities we use will affect us.

• Both classes are easily understood!  
Each implements one concept.  
Rectangle represents a rectangle shape by its geometric properties.  
DrawableRectangle represents a rectangle by its visual properties.

Responsibility

• In general, a class is assigned the responsibility to know or do
something (one thing).

• Examples:

• Class PersonData is responsible for knowing the data of a
person.

• Class CarFactory is responsible for creating Car objects.

• A responsibility is an axis of change.

• A class with only one responsibility has only one reason to
change!

5

In general, if new functionality must be achieved, or existing functionality needs to be changed, the
responsibilities of classes must be changed.

Cohesion

• Cohesion measures the degree of togetherness among
the elements of a class.

• In a class with high cohesion every element is part of the
implementation of exactly one concept. The elements of
the class work together to achieve one common
functionality.

• A class with high cohesion implements only one
responsibility!

6

Cohesion actually measures the extent to which operations and data within a class belong to the concept
this class is representing. Therefore, a class with low cohesion – i.e., a class where the operations and
data actually belongs to several concepts – violates the single-responsibility principle.

Common metrics that are defined to measure the cohesion (such as LCOM(*)) are usually not working at
the conceptual level and hence, would identify a class such as PersonData that stores information
regarding a person and which usually offers a large number of "getter" and "setter" methods as non-
cohesive. But, from a conceptual perspective this class is cohesive.

SRP and Cohesion

• Applying the single-responsibility principle maximizes the
cohesion of classes.

• Classes with high cohesion ...

• can be reused easily,

• are easily understood,

• protect clients from changes, that should not affect
them.

7

Should we split the responsibilities of this
class?

8

The class Employee which has two responsibilities:
1. Calculating an employee’s payment.
2. Storing employee data in the database.

Calculating the payment is part of the business rules. It corresponds to a real-world concept the
application shall implement. Storing information in the database is a technical aspect. It is a necessity of
the IT architecture that we have selected; does not correspond to a real-world concept.

Mixing business rules and technical aspects is calling for trouble! From experience, we know that both
aspects are extremely volatile. Hence, most probably we should split the class in this case.

When to apply the Single-Responsibility Principle?
• We should split a class that has two responsibilities if:

• Both responsibilities will change separately.

• The responsibilities are used separately by other classes.

• Responsibilities pertain to optional features of the system.

• We should not split responsibilities if:

• Both responsibilities will only change together, e.g. if they
together implement one common protocol.

• Both responsibilities are only used together by other classes.

• Responsibilities pertain to mandatory features.

9

This principle also applies at higher-abstraction levels! E.g. at the component-level.

Only apply a principle,
if there is a symptom!

10

Do perform the strategic application of principles! Be agile and modify the design when needed.

Choose the kinds of changes to guide your application of the single-responsibility principle. Guess the
most likely kinds of changes derived from experience. Experienced designers hope to know the user and
an industry well enough to judge the probability of different kinds of changes.
Invoke the single-responsibility principle against the most probable changes.

An axis of change is an axis of change only if the change actually occurs.

