Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Single Responsibility Principle

Single Responsibility Principle

A class should have only one reason to change.

—Agile Software Development; Robert C. Martin; Prentice Hall, 2003

2

What do you think of the following design?

Computational
Geometry
Application

Rectangle

+draw()

< — — - Graphical

+area$2 : double Application

— V

GUI

A Single-

Responsibility Compliant

Rectangle

Design

Computational -S>
Geo_me’_[ry +area() : double
Application /1\
I
l
I
I
| T
DrawableRectangle
Graphical -—-> @@ F===- > GUI
Application +draw()

Responsibility

* In general, a class is assigned the responsibility to know or do
something (one thing).

 Examples:

* Class PersonData is responsible for knowing the data of a
person.

» Class CarFactory is responsible for creating Car objects.

* A responsibility is an axis of change.

* A class with only one responsibility has only one reason to
change!
O

Cohesion

* Cohesion measures the degree of togetherness among
the elements of a class.

* In a class with high cohesion every element is part of the
implementation of exactly one concept. The elements of
the class work together to achieve one common
functionality.

* A class with high cohesion implements only one
responsibility!

SRP and Cohesion

* Applying the single-responsibility principle maximizes the
cohesion of classes.

» Classes with high cohesion ...
e can be reused easily,
e are easily understood,

* protect clients from changes, that should not aftect
them.

Should we split the responsibilities of this
class”

Employee

+ calculatePay() : double
+ storelnDatabase() : void

When to apply the Single-Responsibility Principle?

* We should split a class that has two responsibilities if:
* Both responsibilities will change separately.
* The responsibilities are used separately by other classes.

* Responsibilities pertain to optional features of the system.

* We should not split responsibilities if:

e Both responsibilities will only change together, e.q. if they
together implement one common protocol.

* Both responsibilities are only used together by other classes.

* Responsibilities pertain to mandatory features.

This principle also applies at higher-abstraction levels! E.g. at the component-level.

Only apply a principle,
f there Is a symptom!

