
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Interface Segregation Principle

Summer Semester 2015

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface Segregation Principle

Clients should not be forced to depend on methods that they do
not use.

2

Introduction by Example

• Consider the development of software for an automatic
teller machine (ATM):

• Support for the following types of transactions is
required: withdraw, deposit, and transfer.

• Support for different languages and support for
different kinds of UIs is also required

• Each transaction class needs to call methods on the
GUI  
E.g., to ask for the amount to deposit, withdraw,
transfer.

3

Introduction by Example
• Initial design of a software for an automatic teller machine

(ATM):

4

What do you think?

ISP tells us to avoid this. Each transaction class uses a part of the interface, but depends on all others. Any change affects all transactions.

A Polluted Interface

• It declares methods that
do not belong together.

• It forces classes to depend
on unused methods and
therefore depend on
changes that should not
affect them.

• ISP states that such
interfaces should be split.

5

ATM UI is a polluted interface!

When clients depend on methods
they do not use, they become

subject to changes forced upon
these methods by other clients.

6

The Rationale Behind ISP

This causes coupling between all clients!

How does an ISP compliant solution look like?

7

An ISP Compliant Solution

8

Transfer
Transaction

Withdrawal
Transaction

Deposit
Transaction

+ Execute ()

Transaction
{abstract}

+ requestDepositAmount ()
+ requestWithdrawalAmount ()
+ requestTransferAmount ()
+ informInsufficientFunds ()

«interface»
ATM UI

+ requestTransferAmount ()

«interface»
Transfer UI

+ requestWithdrawalAmount ()
+ informInsufficientFunds ()

«interface»
Withdrawal UI

+ requestDepositAmount ()

«interface»
Deposit UI

Try to group possible clients
of a class and have an

interface for each group.

9

General Strategy

Try to group possible clients
of a class and have an

interface for each group.

10

General Strategy

Proliferation 
of Interfaces⚠

Segregating interfaces should not be overdone!

If you overdue the application of the interface segregation principle, you will end up with 2n-1 interfaces for a class with n methods.

Recall that, in general, a class implementing many interfaces may be a sign of a violation of the single-responsibility principle.

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Interface Segregation Principle

Clients should not be forced to depend on methods that they do
not use.

11

