Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Interface Segregation Principle

Interface Segregation Principle

Clients should not be forced to depend on methods that they do

not use.

—-Agile Software Development; Robert C. Martin; Prentice Hall, 2003

2

Introduction by Example

» Consider the development of software for an automatic
teller machine (ATM):

» Support for the following types of transactions is
required: withdraw, deposit, and transfer.

e Support for different languages and support for
different kinds of Uls is also required

* Each transaction class needs to call methods on the
GUI
E.g., to ask for the amount to deposit, withdraw,
transfer.

Introduction by Example

* |nitial design of a software for an automatic teller machine
(ATM):

Y
Transaction . ma:; »
abstract) U
+ Execute | + requestDepositAmount ()

+ requestWithdrawalAmount ()
+ requestTransferAmount ()

+ informinsufficentFunds “
Deposit Withdrawal Transfer
Transaction Transaction Transaction | = r-cccemcmm et r e

Spooch Ul ’ I Braille U1 I | Screen Ul I

What do you think?

4

ISP tells us to avoid this. Each transaction class uses a part of the interface, but depends on all others. Any change affects all transactions.

A Polluted Interface
ATM Ul is a polluted interface!

e |t declares methods that
do not belong together.

|t forces classes to depend
on unused methods and
therefore depend on
changes that should not
affect them.

« |SP states that such
interfaces should be split.

et facn »

ATM UI

+ roquestDepositAmount ()
+ requestWithdrawalAmount ()
+ requéestTransferAmount ()
+ informinsufficientFunds ()

This causes coupling between all clients!

When clients depend on methods
they do not use, they become
subject to changes forced upon
these methods by other clients.

How does an ISP compliant solution look like?

| v
Transaction wrherace »
~ {abstract) ATM UI
+ Execute | + requestDepositAmount ()

+ requestWithdrawalAmount ()
+ requestTransferAmount ()

+ informinsufficientFunds “
Deposit Withdrawal Transfer E
Transaction Transaction Transaction | = recccmcccc et ————

' | 1

' | '

' | 1

' | '
Spoeoech Ul I I Braille UI l I Screen Ul I

An ISP Compliant Solution

Transaction
{abstract}
+ Execute ()

Deposit Withdrawal Transfer
Transaction Transaction Transaction
P L ETmmmmssss==- 1	
v \ \J
«interface» «interface» «interface»
Deposit Ul Withdrawal Ul Transfer Ul
+ requestDepositAmount () + requestWithdrawalAmount () + requestTransferAmount ()
+ informInsufficientFunds ()

1
«interface»

ATM UI

General Strategy

Try to group possible clients
of a class and have an
interface for each group.

General Strategy

Try to group possible clients
of a class and have an
interface for each group.

' Proliferation
e Of Interfaces

10

Segregating interfaces should not be overdone!
If you overdue the application of the interface segregation principle, you will end up with 2n-1 interfaces for a class with n methods.

Recall that, in general, a class implementing many interfaces may be a sign of a violation of the single-responsibility principle.

Interface Segregation Principle

Clients should not be forced to depend on methods that they do

not use.

—-Agile Software Development; Robert C. Martin; Prentice Hall, 2003

11

