
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Dependency-Inversion Principle

Summer Semester 2015

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Dependency-Inversion Principle

High-level modules should not depend on low-level modules.
Both should depend on abstractions.

Abstractions should not depend on details. Details should
depend on abstractions.

2

Introduction by Example

• Behavior of Button:

• The button is capable of
“sensing” whether it has
been activated/
deactivated by the user.

• Once a change is
detected, it turns the
Lamp on, respectively
off.

3

A Small Design Exercise

Button

+TurnOn()
+TurnOff()

Lamp

Issues?

A Dependency-Inversion Principle Compliant Solution

4

Button

+activate()
+deactivate()

Switchable
«interface»

Lamp

The Rationale behind the
Dependency-Inversion Principle

• High-level, low-level modules. Good software designs are
structured into modules.

• High-level modules contain the important policy
decisions and business models of an application – The
identity of the application.

• Low-level modules contain detailed implementations of
individual mechanisms needed to realize the policy.

5

The Rationale behind the
Dependency-Inversion Principle

• High-level, low-level modules. Good software designs are
structured into modules.

• High-level modules contain the important policy
decisions and business models of an application – The
identity of the application.

• Low-level modules contain detailed implementations of
individual mechanisms needed to realize the policy.

6

High-level Policy

The abstraction that underlies the application;

the truth that does not vary when details are changed; the

system inside the system; the metaphor.

-Grady Booch

„…all well-structured object-oriented architectures have
clearly defined layers, with each layer providing some
coherent set of services through a well-defined and
controlled interface…“  

7

-Grady Booch

„…all well-structured object-oriented architectures have clearly defined
layers, with each layer providing some coherent set of services through a well-
defined and controlled interface…“  

8

Policy
Layer

Mechanism
Layer

Utility
Layer

The higher the module is positioned in a
layered architecture, the more general the
function it implements.

The lower the module, the more detailed
the function it implements.

An Interpretation

Layers and Dependencies

9

Inverted Layer Dependencies

Mechanism

Utility

Policy

Policy
Layer

Mechanism
Layer

Utility
Layer

«interface»
Mechanism

Service Interface

«interface»
Policy Service

Interface

Clients own the
interface - if at all!

Naïve Heuristic for Ensuring DIP

All relationships in a program should terminate on an
abstract class or an interface.

• No class should hold a reference to a concrete class.

• No class should derive from a concrete class.

• No method should override an implemented method of
any of its base classes.

10

DO NOT DEPEND ON A CONCRETE CLASS.

–Agile Software Development; Robert C. Martin; Prentice Hall, 2003

Dependency-Inversion Principle

High-level modules should not depend on low-level modules.
Both should depend on abstractions.

Abstractions should not depend on details. Details should
depend on abstractions.

11

• Traditional structural programming creates a dependency
structure in which policies depend on details.  
(Policies become vulnerable to changes in the details.)

• Object-orientation enables to invert the dependency:

• Policy and details depend on abstractions.

• Service interfaces are owned by their clients.

• Inversion of dependency is the hallmark of good object-
oriented design.  
(Implies an inversion of interface ownership.)

