
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Smart Home Example

Summer Semester 2015

A smart home has many features that are controlled automatically:
Heating, Lighting, Shutters, …

We want to develop a software that helps us to control our smart home.

A First Sketch (I/II)
abstract class Location {
 private List<Shutter> shutters; // FEATURE: DARKENING
 private List<Light> lights; // FEATURE: LIGHTING

 public Location(List<Shutter> shutters, List<Light> lights) {
 this.shutters = shutters;
 this.lights = lights;
 }

 public List<Shutter> shutters() { return shutters; }
 public List<Light> lights() { return lights; }
}

abstract class CompositeLocation<L extends Location> extends Location {
 private List<L> locations;

 public CompositeLocation(List<L> locations) {
 super(shutters(locations), lights(locations));
 this.locations = locations;
 }
 private static List<Light> lights(List<? extends Location> locs) {…}
 private static List<Shutter> shutters(List<? extends Location> locs) {…}

 public List<L> locations() { return locations; }
}

2

Location is the base class that declares the functionality that some location can offer (optionally!). Hence,
it takes multiple responsibilities.

A First Sketch (II/II)
class Room extends Location {
 public Room(List<Shutter> shutters, List<Light> lights) {
 super(shutters, lights);
 }
}

class Floor extends CompositeLocation<Room> {
 public Floor(List<Room> locations) { super(locations); }
}

class House extends CompositeLocation<Floor> {
 public House(List<Floor> locations) { super(locations); }
}

class Main {
 public static void main(String[] args) {
 House house = new House(null);
 List<Floor> floors = house.locations();
 }
}

3
☔

Assessment
In the prototypical solution all (optional) features are declared by the main interface (Location).
We should split the code, if we want to be able to make functional "packages", such as heating control,
lighting control, or security, optional. Consider, e.g., the case that the provider may want to sell several
configurations of a smart home, each with a specific selection of features.

How to model interacting/depending features? E.g., a sensor that closes the shutters in the evening and
turns on the lights.

A Second Sketch (I/II)

public interface Location { }

interface CompositeLocation<L extends Location> extends Location {
 abstract List<L> locations();
}

class Room implements Location { }

class Floor implements CompositeLocation<Room> {
 private List<Room> rooms;

 public List<Room> locations() { return rooms; }
}

class House implements CompositeLocation<Floor> {
 private List<Floor> floors;

 public List<Floor> locations() { return floors; }
}

4

We try to achieve Feature Decomposition.

So far we are just modeling the basic structure of a building (`House`).

A Second Sketch (II/II)

interface LocationWithLights extends Location {
 List<Light> lights();
}

class RoomWithLights extends Room implements LocationWithLights {
 private List<Light> lights;
 public List<Light> lights() { return lights; }
}

abstract class CompositeLocationWithLights<LL extends LocationWithLights>
 implements CompositeLocation<LL> {

 public List<Light> lights() {
 List<Light> lights = new ArrayList<Light>();
 for (LocationWithLights child : locations()) {
 lights.addAll(child.lights());
 }
 return lights;
 }
}

5

We try to achieve Feature Decomposition.

☔

Given the shown code/the proposed solution, we can identify several issues:

• class FloorWithLights extends ...  
The class should inherit from (CompositeLocationWithLights and Floor) ? (we don't want code
duplication!)

• class HouseWithLights extends ...  
The class should inherit from ? (we don't want code duplication!)

• Imagine that we have another additional feature; e.g., shutters and we want to avoid code duplication!

Ideally, we would like to have several versions of class definitions - one per responsibility - which can be
“mixed and matched” as needed.

… In Java, we have to use a Pattern to solve the Design Problem (there is no language support!)

Traits in Scala
abstract class Table[A, B](defaultValue: B) {
 def get(key: A): Option[B]
 def set(key: A, value: B)
 def apply(key: A) = get(key) match {
 case Some(value) ⇒ value
 case None ⇒ defaultValue
 }
}

class ListTable[A, B](defaultValue: B) extends Table[A, B](defaultValue) {
 private var elems: List[(A, B)] = Nil
 def get(key: A) = elems.find(_._1.==(key)).map(_._2)
 def set(key: A, value: B) = { elems = (key, value) :: elems }
}

trait SynchronizedTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): Option[B] =
 synchronized { super.get(key) }
 abstract override def set(key: A, value: B) =
 synchronized { super.set(key, value) }
}

object ASynchronizedTable
 extends ListTable[String, Int](0) with SynchronizedTable[String, Int]

6

mixin
composition

In Scala, traits are a unit of code reuse that encapsulate abstract and concrete method, field and type
definitions. Traits are reused by mixing them into classes. Multiple traits can be mixed into a class (mixin
composition).

Unlike classes, traits cannot have constructor parameters. Traits are always initialized after the superclass
is initialized.

One major difference when compared to multiple inheritance is that the target method of super calls is
not statically bound as in case of (multiple) inheritance. The target is determined anew whenever the trait
is mixed in. This (the dynamic nature of super calls) makes it possible to stack multiple modifications on
top of each other.

The following code snippets are taken from:
• Scala for the Impatient
• Programming in Scala 1.1
• Scala in Depth
• The Scala Specification

Traits in Scala (Continued)
trait LoggingTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): B = {
 println("Get Called"); super.get(key)
 }
 abstract override def set(key: A, value: B) = {
 println("Set Called"); super.set(key, value)
 }
}

object ASynchronizedTable
 extends ListTable[String, Int](0)
 with LoggingTable
 with SynchronizedTable

7

mixin
composition

(Order matters!)

Mixin Composition in Scala
• In Scala, if you mixin multiple traits into a class the

inheritance relationship on base classes forms a directed
acyclic graph.

• A linearization of that graph is performed.  
The Linearization (`Lin`) of a class `C` (`class C extends
C1 with ... with Cn`) is defined as: 
Lin(C) = C, Lin(Cn) ⪼ ... ⪼ Lin(C1)  
where ⪼ concatenates the elements of the left operand
with the right operand, but elements of the right operand
replace those of the left operand.  
{a,A} ⪼ B = a,(A ⪼ B) if a ∉ B 
 = (A ⪼ B) if a ∈ B

8

Recall: The result of the linearization in particular determines the target of super calls made in traits.

Mixin Composition in Scala

• The linearization of class `Iter` is:

• { Iter, Lin(RichIterator) ⪼ Lin(StringIterator) }

• { Iter, Lin(RichIterator) ⪼ { StringIterator ⪼ Lin(AbsIterator) } }

• { Iter, Lin(RichIterator) ⪼ { StringIterator, AbsIterator, AnyRef } }

• { Iter, { RichIterator, AbsIterator, AnyRef } ⪼  
 { StringIterator, AbsIterator, AnyRef } }

• { Iter, RichIterator, StringIterator, AbsIterator, AnyRef, Any }

9

abstract class AbsIterator extends AnyRef { ... }
trait RichIterator extends AbsIterator { ... }
class StringIterator extends AbsIterator { ... }
class Iter extends StringIterator with RichIterator { ... }

2nd Rule

In case of multiple inheritance, the method called by a super call is statically determined based on the
place where the call appears. With traits, the called method is determined by the linearization of the class.
In a way, super is much more flexible.

Abstract Types in Scala
class Food

class Grass extends Food

abstract class Animal {
 type SuitableFood <: Food
 def eat(food: SuitableFood)
}

class Cow extends Animal {
 type SuitableFood = Grass
 override def eat(food: Grass) {}
}

10

An abstract type declaration is a placeholder for a type that will be defined concretely in a subclass. In the
given example, SuitableFood refers to some type of Food (Food is an upper bound) that is still unknown.
Different subclasses can provide different realizations of SuitableFood - depending on the needs of the
respective animal.

Remark: Generics and abstract types can sometimes be used interchangeably.

Path-dependent types in Scala
class DogFood extends Food

class Dog extends Animal {
 type SuitableFood = DogFood
 override def eat(food: DogFood) {}
}

scala> val bessy = new Cow
 bessy: Cow = Cow@10cd6d
scala> val lassie = new Dog
 lassie: Dog = Dog@d11fa6
scala> lassie eat (new bessy.SuitableFood)
 <console>:13: error: type mismatch;
 found : Grass
 required: DogFood
 lassie eat (new bessy.SuitableFood)

11

• In Scala objects can have types as members.
• The meaning of a type depends on the path you use to access it.
• The path is determined by the reference to an Object.
• Different paths give rise to different types.
• In general, a path-dependent type names an outer object

A Third Sketch
trait Shutter
trait Light

abstract class Location {
 def shutters: List[Shutter]
 def lights: List[Light]
}

class Room(
 val lights: List[Light],
 val shutters: List[Shutter]) extends Location

abstract class CompositeLocation[L <: Location] extends Location {
 def lights: List[Light] = locations.flatMap(_.lights)
 def shutters: List[Shutter] = locations.flatMap(_.shutters)
 def locations: List[L]
}

class Floor(val locations: List[Room]) extends CompositeLocation[Room]

class House(val locations: List[Floor]) extends CompositeLocation[Floor]

object Main extends App {
 val house = new House(new Floor(new Room(Nil, Nil) :: Nil) :: Nil)
 val floors: List[Floor] = new House(Nil).locations
}

12
Ja

va
 In

sp
ire

d

What we want to achieve is that:
• Features that are developed independently (such as heating, cooling or lighting) can be (freely)

combined
• The solution is type safe even in the presence of new optional features (which requires appropriate

support by the available programming language)
• We do not duplicate code (Copy & Paste programming).

Additionally, the underlying programming language should also support separate compilation to enable us
to deploy our solution independently.

A Third Sketch (Base)
trait Building {

 trait TLocation {}
 type Location <: TLocation

 trait TRoom extends TLocation
 type Room <: TRoom with Location
 def createRoom(): Room

 trait CompositeLocation[L <: Location] extends TLocation {
 def locations: List[L]
 }

 trait TFloor extends CompositeLocation[Room]
 type Floor <: TFloor with Location
 def createFloor(locations: List[Room]): Floor

 trait THouse extends CompositeLocation[Floor]
 type House <: THouse with Location
 def createHouse(locations: List[Floor]): House

 def buildHouse(specification: String): House = {
 // imagine to parse the specification...
 createHouse(List(createFloor(List(createRoom()))))
 }
}

13

Enable the refinement of TLocation!

We need a Factory method to create
(yet unknown) rooms.

Note, that the buildHouse method constructs a House object though the concrete type is not yet known.

A Third Sketch (Adding Lights)
trait Lights extends Building {

 trait TLocation extends super.TLocation {
 def lights(): List[Light]
 def turnLightsOn = lights.foreach(_.turnOn())
 def turnLightsOff = lights.foreach(_.turnOff())
 }
 type Location <: TLocation

 trait TRoom extends super.TRoom with TLocation
 type Room <: TRoom with Location

 trait CompositeLocation[L <: Location]
 extends super.CompositeLocation[L] with TLocation {
 def lights: List[Light] = locations.flatMap(_.lights())
 }

 trait TFloor extends super.TFloor with CompositeLocation[Room]
 type Floor <: TFloor with Location

 trait THouse extends super.THouse with CompositeLocation[Floor]
 type House <: THouse with Location
}

14 Sh
ut
te
rs

 is
co

mpa
rab

le!

A Third Sketch (Lights And Shutters)
trait LightsAndShutters extends Lights with Shutters {

 trait TLocation
 extends super[Lights].TLocation
 with super[Shutters].TLocation
 type Location <: TLocation

 trait TRoom extends super[Lights].TRoom with super[Shutters].TRoom
 with TLocation
 type Room <: TRoom with Location

 trait CompositeLocation[L <: Location]
 extends super[Lights].CompositeLocation[L]
 with super[Shutters].CompositeLocation[L]
 with TLocation

 trait TFloor extends super[Lights].TFloor with super[Shutters].TFloor
 with CompositeLocation[Room]
 type Floor <: TFloor with Location

 trait THouse extends super[Lights].THouse with super[Shutters].THouse
 with CompositeLocation[Floor]
 type House <: THouse with Location
}

15

Though we got the features that we wanted, the code feels like “Assembler Code” at the type level. Scala
lacks support for deep, nested mixin composition (i.e., it does not support Virtual Classes/Dependent
Classes).

A Third Sketch (Usage)
object BuildingsWithLightsAndShutters extends LightsAndShutters with App {

 type Location = TLocation
 type Room = TRoom
 type Floor = TFloor
 type House = THouse

 def createRoom(): Room =
 new Room {
 var lights = List.empty[Light];
 var shutters = List.empty[Shutter]
 }
 def createFloor(rooms: List[Room]): Floor =
 new Floor { val locations = rooms }
 def createHouse(floors: List[Floor]): House =
 new House { val locations = floors }

 val h = buildHouse("three floors with 6 rooms each")
 h.lights
 h.shutters
 h.locations
 h.turnLightsOn
}

16

Basically, in the first 4 lines we create type aliases for location, room, floor and house which "fixes" our
abstract type definitions. After that we implement the factory methods as required. For the method
parameter types and return types, we still use the names of the type definitions.

Example Usage
val r1 = BuildingsWithLightsAndShutters.createRoom()
val rO = BuildingsWithLights.createRoom()
BuildingsWithLightsAndShutters.createFloor(List(r1, rO))

• For further information search for the Cake Pattern in Scala.
• More advanced language concepts such as Virtual Classes and Dependent Classes would make the

solution even easier (much less boilerplate code!)

