
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Decorator Pattern

Summer Semester 2015

Intent of the Decorator Pattern

• dynamically, i.e., during runtime after the object is
created,

• without having to implement conditional logic to use the
new functionality.

2

We need to add functionality to existing objects!

The usual way to add new functionality to an existing design is by means of inheritance. But, as we have
already discussed, dynamic/flexible extensions are not supported, the extensions are non-reusable, and
multiple extensions are hard to combine.

These problems are targeted by Decorator. Decorator is also suggested to solve the fragile base-class problem, [but is that
so?].

Decorator can be an alternative to Strategy with different trade-offs.

operation()

Component

operation()

ConcreteComponent

operation()

Decorator

operation()
addedBehavior()

ConcreteDecoratorB

operation()
addedState
ConcreteDecoratorA

«method»
component.operation()

«method»
super.operation()
addedBehavior()

The Structure of a Decorator-Based Design

3

• ConcreteComponent is a representative for all classes whose objects should be dynamically
extensible with new functionality.

• Component can be:
• an interface that declares all operations of ConcreteComponent objects whose functionality we

want to extend dynamically (here represented by operation),
• a common (abstract) superclass of all ConcreteComponent classes, which implements

common functionality.
• Any Decorator is also a Component:

• Maintains a field comp of type Component
• Implements the operations declared in Component
• Default implementation forwards the same operation to comp.
• Special decorators perform some additional functionality before or after forwarding to comp.

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

Filter
InputStream

Data
InputStream

Buffered
InputStream

Pushback
InputStream

The Decorator Pattern - by Example

DataInputStream dis = new DataInputStream(new FileInputStream(file));

dis.readUnsignedByte();

java.io abstracts various data sources and destinations.

It uses Decorator to modularize various processing algorithms that operate on raw data.

Each Variation Defined Once

5

No Code Duplication InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

PipedData
InputStream

PipedBuffered
InputStream

PipedPushback
InputStream

ByteArrayData
InputStream

ByteArrayBuffered
InputStream

ByteArrayPushback
InputStream

...

...

...

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

Filter
InputStream

Data
InputStream

Buffered
InputStream

Pushback
InputStream

Using Inheritance Only

Using the Decorator Pattern

Decorator-based designs share the desired properties of corresponding designs based on inheritance
only that variations are well modularized. We define one class per variation of base and decorative
functionality.

Unlike inheritance-based designs, decorator-based designs yield variations that are reusable with any
class in the Component hierarchy. Furthermore, variations are applied dynamically. (The former property
is often the (more) relevant one.)

Improved Flexibility

• Decorative functionality can be added / removed at run-time.

• Combining different decorator classes for a component class
enables to mix and match responsibilities as needed.
 
is = new FileInputStream(file);
is.read(…);
…
DataInputStream dis = new DataInputStream(is);
dis.readUnsignedByte();
…
(new BufferedInputStream(dis)).readLine(…);

• Easy to add functionality twice.  
E.g., given a class `BorderDecorator` for a `TextField`, to add a
double border, attach two instances of `BorderDecorator`.

6

Decorator Avoids Incoherent
Classes
• No need for feature-bloated classes positioned high up in

the inheritance hierarchy to avoid code duplication.

• Pay-as-you-go approach: Do not bloat, but extend using
fine-grained Decorator classes.

• Functionality can be composed from simple pieces.

• A client does not need to pay for features it does not
use.

7

Advantages of Decorator-
Based Designs

8

A fine-grained Decorator hierarchy
is easy to extend.

Decorator helps to design software
that better supports OCP.

Consequences of Decorator-Based Designs
• Lots of Little Objects

• A decorator and its component are not identical (Object
identity) 
 
FileInputStream fin = new FileInputStream(“a.txt”);  
BufferedInputStream din = new BufferedInputStream(fin);

• No Late Binding

9

message
receiver

message
holder

this

message
receiver

message
holder

this

D
el

eg
at

io
n

Fo
rw

ar
di

ng

• Lots of little objects:
• A design that uses Decorator often results in systems composed of lots of little objects that all

look alike. Objects differ only in the way they are interconnected, not in their interface or in the
value of their variables.

• Such systems are easy to customize by those who understand them, but can be hard to learn
and debug. The responsibility for combining features is put on the shoulders of a library user.

• Object identity (A decorator and its component are not identical!):
• From an object identity point of view, a decorated component is not identical to the component

itself.
• You should not rely on object identity when you use decorators.
• Easy to "forget" the "decorative" functionality.

• No late binding:
• A decorator and its component interact via forward semantics.
• Forward semantics does not ensure late binding as we know from inheritance.
• Delegation semantics is not available in mainstream class-based OO languages.

getType() : String
printHistory()

type : String

Account
{abstract}

printHistory()

CheckingAccount

«method»
... getType(); ...

«method»
... getType(); ...

printHistory()

SavingsAccount

No Late Binding Illustrated
Task:

• Extend the design to enable
online access to accounts.

• Decorator seems to be the right
choice!

• Among other things, we decorate
the description of accounts with
the label “online”.

• The way the history is calculated
does not need to be decorated,
hence, the decorator just
forwards.

The diagram shows a simplified extract of the design of a banking application:
• There are two kinds of accounts:

• Checking accounts for day-to-day bank transactions.
• Saving accounts for depositing money with a fixed interest rate.

• Accounts know how to return a string that describes them.
• Accounts declare a method for printing a history of recently performed transactions.

getType() : String
printHistory()

type : String

Account
{abstract}

printHistory()

CheckingAccount

getType() : String
printHistory()

OnlineAccount

«method»
... getType(); ...

«method»
... getType(); ...

printHistory()

SavingsAccount

«method»
return type;

«method»
return "online"+account.getType();

«method»
account.printHistory();

account

No Late Binding Illustrated
Do you see where we hit the "no-late binding" problem?

11

getType() : String
printHistory()

type : String

Account
{abstract}

printHistory()

CheckingAccount

getType() : String
printHistory()

OnlineAccount

«method»
... getType(); ...

«method»
... getType(); ...

printHistory()

SavingsAccount

«method»
return type;

«method»
return "online"+account.getType();

«method»
account.printHistory();

account

No Late Binding Illustrated

• Does the call to printHistory on onlineAcc behave as expected?
…
Account checkingAcc =
 new CheckingAccount(…);

…
Account onlineAcc =
 new OnlineAccount(
 checkingAccount);

…
onlineAcc.printHistory();
…

Answer: OnlineDecorator decorates getType(). Yet, since CheckingAccount.printHistory() calls getType()
via this, the execution escapes the decoration of getType().
Call to onlineDec.printHistory().

a) Call to checkingAcc.printHistory() as the result of the forwarding by the call to account.printHistory() in
the implementation of OnlineDecorator.printHistory().

b) Execution of CheckingAccount.printHistory(). Call to getType() inherited from Account, not
OnlineAccount!

Implementation Issues

• Keep the common class (Component) lightweight!

• A decorator's interface must conform to the interface of
the component it decorates.

• There is no need to define an abstract Decorator class
when you only need to add one responsibility.

13

The common class should focus on defining an interface. Defer defining data representation to
subclasses. Otherwise, the complexity of Component might make the decorators too heavyweight to use
in quantity.
Putting a lot of functionality into Component makes it likely that subclasses will pay for features they do
not need.
These issues require pre-planning. Difficult to apply the decorator pattern to 3rd-party component class.

It is often the case that you do not need to define an abstract Decorator class when you're dealing with
an existing class hierarchy rather than designing a new one. In this case, you can merge Decorator's
responsibility for forwarding requests to the component into the concrete Decorator.

Decorator and the Fragile
Base-Class Problem

14

Does the use of the Decorator
Pattern solve the fragile base-class
problem?

The Decorator pattern is suggested in several books (e.g., Effective Java by Joshua Bloch) as a solution
to the fragile base-class problem.

The InstrumentedHashSet
again…
public class InstrumentedHashSet<E> extends java.util.HashSet<E> {
 private int addCount = 0;
 …
 @Override public boolean add(E e) {
 addCount++; return super.add(e);
 }
 @Override public boolean addAll(java.util.Collection<? extends E> c) {
 addCount += c.size(); return super.addAll(c);
 }
 public int getAddCount() { return addCount; }
}

public static void main(String[] args) {
 InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
 s.addAll(Arrays.asList("aaa", "bbb", "ccc"));
 System.out.println(s.getAddCount());
}

15

Ask yourself (again): What is printed on the screen?

A Decorator-Based
InstrumentedSet
1. Declare an interface Set<E>

2. Let HashSet<E> implement Set<E>

3. Define ForwardingSet<E> as an implementation of Set<E>

4. ForwardingSet<E> (our root Decorator)

1. Has a field s of type Set<E>

2. Implements methods in Set<E> by forwarding them to s

5. InstrumentedSet<E> (a concrete Decorator) extends
ForwardingSet<E> and overrides methods add and addAll

16

Recipe For Using Decorator
Instead of inheriting from a class `C` to define `EC`:
• Declare the interface of `C`, `IC`
• Let `C` implement `IC`
• If more than one decoration is planned:

• Let a class `ForwardingC` implement `IC`.
• `ForwardingC` has a field `ic` that holds an object of type `IC`.
• `ForwardingC` implements methods in `IC` by forwarding to `ic`.
• Let `EC` extend `ForwardingC` and override methods in `IC` affected by the extension.

• * Otherwise:
• Let `EC` implement `IC`.
• `EC` has a field ic that holds an object of type `IC`.
• `EC` implements methods in IC affected by the extension and forwards the rest to `ic`.

A ForwardingSet<E>

import java.util.*;
public class ForwardingSet<E> implements Set<E> {
 private final Set<E> s;

 public ForwardingSet(Set<E> s) { this.s = s; }
 public void clear() { s.clear();}
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty(){ return s.isEmpty();}
 public int size(){ return s.size();}
 public Iterator<E> iterator(){ return s.iterator();}
 public boolean add(E e){ return s.add(e);}
 public boolean remove(Object o) { return s.remove(o);}
 public boolean containsAll(Collection<?> c) { ... }
 public boolean addAll(Collection<? extends E> c) { ... }
 public boolean removeAll(Collection<?> c) {...}
 …
}

17

An Alternative InstrumentedSet

import java.util.*;
public class InstrumentedSet<E> extends ForwardingSet<E> {
 private int addCount = 0;
 public InstrumentedSet(Set<E> s) { super(s); }
 @Override public boolean add(E e) {
 addCount++;
 return super.add(e);
 }
 @Override public boolean addAll(Collection<? extends E> c){
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() { return addCount; }
}
public static void main(String[] args) {
 InstrumentedSet<String> s =
 new InstrumentedSet<String>(new HashSet<String>());
 s.addAll(Arrays.asList("aaa", "bbb", "ccc"));
 System.out.println(s.getAddCount());
}

18

Wha
t is

 pr
int

ed
 on

 th
e s

cre
en

?

In this case, the value 3 is printed on the screen. The internal call to add in the implementation of addAll in
HashSet does not come back to the decorater s; hence, it does not increase the counter.

Bloch's Conclusion:
The Decorator-based solution is better.
There are only few disadvantages:
• No late binding.
• Tedious to write forwarding methods, „but you do it only once“.
• Efficiency impact of forwarding and memory footprint, but „neither turns out to have much impact in practice“

Decorator and the Fragile
Base-Class Problem

19

Does the use of the Decorator
Pattern really solve the fragile
base-class problem?

Ask yourself:

What happens if I add a new method to the interface?
Doesn‘t the same problems reappear as with inheritance?

Fragile Base Class Related Issues:
• Adding a method to the interface may escape the decoration (e.g., imagine a method

`add(Collection,Filter)` is added to `Set<E>` and to `ForwardingSet<E>`; after that all compile-time
requirements are satisfied, but `InstrumentedSet<E>` does not override the method and, hence, does
not update the counter correctly.)

• Adding a method to the interface may conflict (signature) with the methods defined by the concrete
decorator.

Other Issues:
• "Some logic" needs to be reimplemented. E.g., imagine that a method is added to set a filter

(`setFilter(Filter)`) and after that always only those elements are added to the set that pass the filter. Such
a change would require to duplicate the logic in our decorator.

Decorator and Strategy

20

Decorator and Strategy share the goal of supporting dynamic behavior adaptation.

operation()

Component

operation()

ConcreteComponent

operation()

Decorator

operation()
addedBehavior()

ConcreteDecoratorB

operation()
addedState
ConcreteDecoratorA

«method»
component.operation()

«method»
super.operation()
addedBehavior()

«interface»
StrategyContext

ConcreteStrategyB

ConcreteStrategyA
algorithmInterface()

algorithmInterface()

algorithmInterface()

Decorator and Strategy can be used to simulate the effect of each other.

Simulate the Effect of Each Other

21

By extending the number of strategies from just one to an open-ended list, we achieve
principally the same effect as nesting decorators.

: aStrategy: aComponent : aStrategy

strategy-extended functionality

strategy next

Example:
• We can use Strategy to simulate data processing decoration of streams.
• Different processing steps can be supported by having the component forward data-processing

functionality to a `DataProcessing` object, which in turn may encapsulate another `DataProcessing`
object. (`DataProcessing` objects encapsulate data-processing strategies.)

Transparent vs. Non-Transparent
Change

22

Decorator changes a component from the outside:
The component does not know about its decorators.

Strategy changes a component from the inside:
Component knows about Strategy-based extensions.

: aStrategy: aComponent : aStrategy

strategy-extended functionality

strategy next

: aDecorator: aDecorator : aComponent

decorator-extended functionality

component component

Changing the Skin versus Changing the Guts
Decorator can be viewed as a skin over an object that changes its behavior.
Strategy can be viewed as guts inside an object that changes its behavior.

Preferring Decorator over Strategy
The Decorator has two principal advantages over Strategy:
1. Improved modularity: The Decorator “infrastructure” does not leave any footprint in the implementation

of the decorated object.
2. Extensible interface: Decorators can extend the interface of the decorated component “on-demand”;

No need to plan an “one-size-fits-all” interface.
Consequently, the decorator is better when:
• We cannot foresee variations.
• It is hard to design an interface that fits all needs of the variations.
Preferring Strategy over Decorator
The Strategy pattern is better when the varying object type is intrinsically heavyweight. (Think of the
JTable and the Cell Rendering Strategy…)
The Decorator pattern is too costly to apply in this case. A Decorator's interface must conform to
Component's interface.

Takeaway Decorator vs. Strategy

• Like the Strategy, the Decorator pattern also uses a
combination of object composition and inheritance/subtype
polymorphism to support dynamic and reusable variations.

• Unlike the Strategy, it adapts object behavior from the
outside rather than inside.

• Unlike Strategy, variations encapsulated in decorator
objects do not leave any footprint in the behavior of the
objects being adapted.

• In that sense, it has a stronger “inheritance” resemblance
than Strategy.

23

Takeaway

Decorator may lead to error-prone and hard to understand designs.

• Many little objects emulate the behavior of a conceptually single
object.

• No object identity.

• No late-binding.

• Not appropriate for modeling the variability of heavy-weight objects
with a lot of functionality.

• Might not be applicable to third-party library objects.

• It does not really solve the fragile base-class problem.
24

A "Static" Decorator

trait Component {
 def state : String
 def name: String
}
case class AComponent (id : String) extends Component {
 def state = name+":"+id
 def name = "A"
}
trait ComponentDecoratorA extends Component {
 abstract override def name = "ByADecorated:"+super.name
}
trait ComponentDecoratorB extends Component {
 abstract override def name = "ByBDecorated:"+super.name
}

object DemoStructuralDecorator extends App {
 val c = new AComponent("42") // static decoration
 with ComponentDecoratorA with ComponentDecoratorB
 println(c.state)
}

25

Using mixins we can statically decorate classes (class
composition vs. object composition)  
and also get delegation semantics.

Output: B
yBD

eco
rat

ed:
ByA

Dec
ora

ted
:A:

42

Assessment:
• Each Decorator is well modularized
• We get delegation semantics.
• No overhead (no little objects).
• No dynamic decoration.

Task: Apply this example to the Account example.
Ask yourself: Does Mixin-Composition solve the fragile base-class problem?

Further reading: Stackable Traits:http://www.artima.com/scalazine/articles/stackable_trait_pattern.html

