
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Proxy Pattern

Summer Semester 2015

Proxy Pattern

2

Provide a surrogate or placeholder
for another object to control access
to it.

Proxy Pattern - Typical Variations

• Virtual Proxies: Placeholders

• Smart References: Additional functionality

• Remote Proxies: Make distribution transparent

• Protection Proxies: Rights management

3

request()

SubjectClient

request()

RealSubject

request()

ProxyrealSubject

«method»
{ ...

realSubject.request()
...

}

Proxy Pattern Structure

4

paragraph

paragraph

 paragraph

Image

Document

draw()
bounds()
store()
load()

DocElement

draw()
bounds()
store()
load()

Image

draw()
bounds()
store()
load()

Paragraph

Document

Example
• Imagine, you are

developing a browser
rendering engine.

• In this case you do not
want to handle all elements
in a straightforward manner.

• E.g., you immediately want
to start laying out the page
even if not all images are
already completely loaded.
However, this should be
completely transparent to
the layout engine.

How can I hide the fact that loading the image takes time?

16Kb 2Mb

imageProxy image

:Document :ImageProxy :Image
image

in memory on disc

fileName:String
on

 de
man

d

Lazy Loading - Solution

• We use another object, an image proxy, that acts as a stand-in for
the real image.

DocElement

Graphic

Document

Image draw()
bounds()
...

image : image
ImageProxy

«method»
{

if (image ==null) {
loadImage();

}
image.draw();

}

Lazy Loading - Solution

7

Summary

• without making clients aware of that fact,  
(I.e., the client is not creating the proxy object and is usually has no direct dependency on the proxy’s type.)

• while achieving a benefit of some kind:

• lazy creation,

• resource and/or rights management, or

• distribution transparency.

8

The Proxy Pattern describes how to replace an object with
a surrogate object.

Java's Dynamic Proxy Class
• A dynamic proxy class is a class that implements a list of

interfaces specified at runtime such that a method
invocation through one of the interfaces on an instance of
the class will be encoded and dispatched to another
object through a uniform interface.

• A proxy interface is such an interface that is implemented
by a proxy class.

• A proxy instance is an instance of a proxy class.

9

Subtitle Text

Java's Dynamic Proxy Class - Example
public interface Foo { Object bar(Object obj); }
public class FooImpl implements Foo { Object bar(Object obj) { … } }

public class DebugProxy implements java.lang.reflect.InvocationHandler {
 private Object obj;

 public static Object newInstance(Object obj) {
 return Proxy.newProxyInstance(
 obj.getClass().getClassLoader(),obj.getClass().getInterfaces(),
 new DebugProxy(obj));
 }

 private DebugProxy(Object obj) { this.obj = obj; }

 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable {
 System.out.println("before method " + m.getName());
 return m.invoke(obj, args);
 }
}

Foo foo = (Foo) DebugProxy.newInstance(new FooImpl());
foo.bar(null);

10

Setup
Usage

Review Questions

• What is the "major" difference between the Proxy and the
Decorator Pattern?  
(Think about the structure and the behavior.)

11

m()

m()

L

m()

Rl «method»
... l.m() ...

m()

m()

L

m()

R

«method»
... l.m() ...

m()

m()

L

m()

R

m()
n()

R’

m()
addedState

R’’

«method»
... l.m() ...

Review Questions

• Is the Proxy Design Pattern subject to the "fragile base
class" problem?  
(And if so, where and in which way?)

• In Java, we only have forwarding semantics, but could it
be desirable to have delegation semantics, when
implementing the proxy pattern?

12

