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Proxy Pattern




Proxy Pattern

Provide a surrogate or placeholder
for another object to control access
to It.



Proxy Pattern - Typical Variations

Virtual Proxies: Placeholders
Smart Refterences: Additional functionality
Remote Proxies: Make distribution transparent

Protection Proxies: Rights management



Proxy Pattern Structure

Client

|
RealSubject

Subject

request()

{

«method» m

.r.e.aISubject.request()

realSubject

request()

request(®




Example

* Imagine, you are
developing a browser
rendering engine.

* |n this case you do not
want to handle all elements

in a straightforward manner.

* E.g., you immediately want
to start laying out the page
even if not all images are
already completely loaded.
However, this should be
completely transparent to
the layout engine.
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How can | hide the fact that loading the image takes time?




| azy Loading - Solution
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* We use another object, an image proxy, that acts as a stand-in for

the real image.




Lazy Loading - Solution
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Summary

The Proxy Pattern describes how to replace an object with
a surrogate object.

* without making clients aware of that fact,

(l.e., the client is not creating the proxy object and is usually has no direct dependency on the proxy’s type.)

* while achieving a benefit of some kind:
e lazy creation,
* resource and/or rights management, or

e distribution transparency.



Java's Dynamic Proxy Class

* A dynamic proxy class is a class that implements a list of
interfaces specitied at runtime such that a method
invocation through one of the interfaces on an instance of
the class will be encoded and dispatched to another
object through a uniform interface.

* A proxy interface is such an interface that is implemented
by a proxy class.

* A proxy instance is an instance of a proxy class.
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Java's Dynamic Proxy Class - Example

public interface Foo { Object bar(Object obj); }
public class FooImpl implements Foo { Object bar(Object obj) { .. } }

public class DebugProxy implements java.lang.reflect.InvocationHandler {
private Object obj;

public static Object newInstance(Object obj) {
return Proxy.newProxyInstance(

obj.getClass().getClassLoader(),obj.getClass().getInterfaces(),
new DebugProxy(obij));

ks
private DebugProxy(Object obj) { this.obj = obj; }
public Object invoke(Object proxy, Method m, Object[] args) throws Throwable {

System.out.println("before method " + m.getName());
return m.invoke(obj, args);

Foo foo = (Foo) DebugProxy.newInstance(new FooImpl()); Usage
foo.bar(null);
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Review Questions

 What is the "major" difference between the Proxy and the
Decorator Pattern?

(Think about the structure and the behavior.)
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Review Questions

* |s the Proxy Design Pattern subject to the "fragile base
class" problem?

(And if so, where and in which way?)

* |In Java, we only have forwarding semantics, but could it
be desirable to have delegation semantics, when
implementing the proxy pattern?
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