Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Proxy Pattern

Proxy Pattern

Provide a surrogate or placeholder
for another object to control access
to It.

Proxy Pattern - Typical Variations

Virtual Proxies: Placeholders
Smart Refterences: Additional functionality
Remote Proxies: Make distribution transparent

Protection Proxies: Rights management

Proxy Pattern Structure

Client

|
RealSubject

Subject

request()

{

«method» m

.r.e.aISubject.request()

realSubject

request()

request(®

Example

* Imagine, you are
developing a browser
rendering engine.

* |n this case you do not
want to handle all elements

in a straightforward manner.

* E.g., you immediately want
to start laying out the page
even if not all images are
already completely loaded.
However, this should be
completely transparent to
the layout engine.

Document

paragraph

paragraph

paragraph

Document ———= DocElement
draw()
bounds()
store()
load()

BVAWAN
| |
| |
| |

Paragraph Image

draw() draw()

bounds() bounds()
store() store()
load() load()

How can | hide the fact that loading the image takes time?

| azy Loading - Solution

16Kb

ImageProxy

iImage

:Document

=

:ImageProxy

fileName:String

In memory

2Mb

on disc

* We use another object, an image proxy, that acts as a stand-in for

the real image.

Lazy Loading - Solution

Document

ImageProxy

—> DocElement
|
|
Graphic
- == -
l
|
|
|
Image [< draw() @ ~

image : image.

bounds()

o

«method»

{

}

If (image ==null) {
loadimage();

}

iImage.draw();

Summary

The Proxy Pattern describes how to replace an object with
a surrogate object.

* without making clients aware of that fact,

(l.e., the client is not creating the proxy object and is usually has no direct dependency on the proxy’s type.)

* while achieving a benefit of some kind:
e lazy creation,
* resource and/or rights management, or

e distribution transparency.

Java's Dynamic Proxy Class

* A dynamic proxy class is a class that implements a list of
interfaces specitied at runtime such that a method
invocation through one of the interfaces on an instance of
the class will be encoded and dispatched to another
object through a uniform interface.

* A proxy interface is such an interface that is implemented
by a proxy class.

* A proxy instance is an instance of a proxy class.

Subtitle Text

Java's Dynamic Proxy Class - Example

public interface Foo { Object bar(Object obj); }
public class FooImpl implements Foo { Object bar(Object obj) { .. } }

public class DebugProxy implements java.lang.reflect.InvocationHandler {
private Object obj;

public static Object newInstance(Object obj) {
return Proxy.newProxyInstance(

obj.getClass().getClassLoader(),obj.getClass().getInterfaces(),
new DebugProxy(obij));

ks
private DebugProxy(Object obj) { this.obj = obj; }
public Object invoke(Object proxy, Method m, Object[] args) throws Throwable {

System.out.println("before method " + m.getName());
return m.invoke(obj, args);

Foo foo = (Foo) DebugProxy.newInstance(new FooImpl()); Usage
foo.bar(null);

10

Review Questions

 What is the "major" difference between the Proxy and the
Decorator Pattern?

(Think about the structure and the behavior.)

>
S m()
m() - _%_ - -
A | |
| R L
|
i | «method» m
||_ | Fl{ «method» Im() -% ()
< L Im() _——d — -
m() mO e’ | |
R’ R”

addedState
m() m()

11

Review Questions

* |s the Proxy Design Pattern subject to the "fragile base
class" problem?

(And if so, where and in which way?)

* |In Java, we only have forwarding semantics, but could it
be desirable to have delegation semantics, when
implementing the proxy pattern?

12

