
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Bridge Pattern

Summer Semester 2015

The Bridge Design
Pattern

2

Decouple an abstraction from its
implementation.
So that the two can vary
independently.

Motivation by Example

3

We want to support multiple operating systems:

We want to provide different types of windows:

Window

GnomeWindow KDEWindow MacWindow WinWindow

Window

Frame Dialog ...

Abstraction

Implementation

Frame

Window

GnomeWindow

KDEWindow

MacWindow

WinWindow

GnomeFrame

KDEFrame

MacFrame

WinFrame

Motivation by Example
Two dimensions of variability!

4

Can you imagine a better solution?

Several problems:
• Implementation bound to abstraction
• Code duplication and proliferation of classes

operationImpl()

Implementor

operationImpl()

ConcreteImplementor2

operationImpl()

ConcreteImplementor1

operation()

Abstraction

RefinedAbstraction

«method»
imp.operationImpl();

Client
imp

Bridge Design Pattern - Structure

5

Bridge

Combine inheritance and object composition.

Combine inheritance and object composition:
• Use inheritance to model variations of the abstraction.
• Use object composition to abstract from implementation variations.

DevDrawLine()

WindowImp

DevDrawLine()

WindowsWindow

DevDrawLine()

MacWindow

drawRect()

Window

Dialog

«method»

imp.DevDrawLine()

;

imp

Bridge Design Pattern - Illustrated

6

Bridge

The Rationale Underlying the Solution:

• Object composition and inheritance provide different trade-offs for expressing variations.
• Object composition is used to implement dynamic variations with a fixed interface.
• Implementation variations are more of this kind; although not always…
• For static variations inheritance is preferred, because it supports structural variations.
• Abstraction variations are mostly static.
• They often imply variation of structure.

DevDrawLine()

WindowImp

DevDrawLine()

WindowsWindow

DevDrawLine()

MacWindow

drawRect()

Window

Dialog

«method»

imp.DevDrawLine()

;

imp

Bridge Design Pattern - Illustrated

7

Bridge

Inheritance allows adding of new field and methods.

Composition demands a fixed interface.

Advantages
Decoupling interface and implementation:
• Implementation can be configured at run-time.
• The implementation in use is hidden inside the abstraction.

Improved extensibility:
• Both abstractions and their implementations become independently extensible by subclassing without

a class proliferation.
• Different abstractions and implementations can be combined.

Takeaway
• The Bridge Pattern instructs to use object composition to

bridge between two inheritance hierarchies when you
need to combine two kinds of variations of an object type.

• The Bridge Pattern allows to vary an abstraction and its
implementation independently of each other.

• Works well as long as there is no dependency between
the implementation on abstraction variations, i.e., if they
do not vary co-variantly.

8

