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Decouple an abstraction from its 
implementation.  
So that the two can vary 
independently.



Motivation by Example
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We want to support multiple operating systems:

We want to provide different types of windows:
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Motivation by Example
Two dimensions of variability!
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Can you imagine a better solution?

Several problems: 
• Implementation bound to abstraction 
• Code duplication and proliferation of classes
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Bridge Design Pattern - Structure
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Bridge

Combine inheritance and object composition.

Combine inheritance and object composition: 
• Use inheritance to model variations of the abstraction. 
• Use object composition to abstract from implementation variations. 
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Bridge Design Pattern - Illustrated
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Bridge

The Rationale Underlying the Solution: 

• Object composition and inheritance provide different trade-offs for expressing variations.  
• Object composition is used to implement dynamic variations with a fixed interface. 
• Implementation variations are more of this kind; although not always… 
• For static variations inheritance is preferred, because it supports structural variations.  
• Abstraction variations are mostly static. 
• They often imply variation of structure. 
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Bridge Design Pattern - Illustrated
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Bridge

Inheritance allows adding of new field and methods.

Composition demands a fixed interface.

Advantages 
Decoupling interface and implementation: 
• Implementation can be configured at run-time. 
• The implementation in use is hidden inside the abstraction. 

Improved extensibility:  
• Both abstractions and their implementations become independently extensible by subclassing without 

a class proliferation. 
• Different abstractions and implementations can be combined. 

Takeaway
• The Bridge Pattern instructs to use object composition to 

bridge between two inheritance hierarchies when you 
need to combine two kinds of variations of an object type. 

• The Bridge Pattern allows to vary an abstraction and its 
implementation independently of each other. 

• Works well as long as there is no dependency between 
the implementation on abstraction variations, i.e., if they 
do not vary co-variantly.
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