Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Bridge Pattern

I'he Bridge Design
Pattern

Decouple an abstraction from its
Implementation.
So that the two can vary

iIndependently.

Motivation by Example

We want to provide different types of windows:

Window

Abstraction

We want to support multiple operating systems:

- s o oas e e e o

Window

-— e e ge—

——— e e e e e

=

’

Implementation

-— e o o ey

GnomeWindow

|
KDEWindow

|
MacWindow

|
WinWindow

Motivation by eExample

Two dimensions of variability!

Can you imagine a better solution?

Bridge Design Pattern - Structure
BRIDGE

Abstraction imp ”Imp'lementor
Client —= >

operation() e, operationlmpl()
| <<meth3d »
	imp.operationlmpl();	= === —~- e
l | |

RefinedAbstraction Concretelmplementor2 Concretelmplementor1

operationimpl() operationimpl()

Combine inheritance and object composition.

Bridge Design Pattern - lllustrated

B | d
= .J,," R EX, T
e - o oE M L= B S
R~ N

Window

Windowlmp

drawRect() e

«method»
imp.DevDrawLine()

DevDrawlLine()

|
MacWindow

WindowsWindow
DevDrawlLine() DevDrawlLine()

Bridge Design Pattern - lllustrated

B | d
- .J/.s~ R, T
- o DE IR < C e, v
S -/ 4 S .

Window

Windowlmp

drawRect() e DevDrawlLine()

«method» |
imp.DevDrawLine() e 1

|
| Dialog | WindowsWindow MacWindow

DevDrawlLine() DevDrawlLine()

Inheritance allows adding of new field and methods.

Composition demands a fixed interface.

Takeaway

* [he Bridge Pattern instructs to use object composition to
bridge between two inheritance hierarchies when you
need to combine two kinds of variations of an object type.

* [he Bridge Pattern allows to vary an abstraction and its
implementation independently of each other.

 Works well as long as there is no dependency between
the implementation on abstraction variations, i.e., if they
do not vary co-variantly.

