Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik
Technische Universitat Darmstadt

Builder Pattern

The Builder Pattern

Divide the construction of multi-part
objects in different steps, so that
different implementations of these
steps can construct different
representations of object

Builder defines the individual steps of the construction of Product.

Builder - Structure

Director knows in which order to construct Product.

Builder
Director «interface»
«use . . .
————— > +buildPartA) ConcreteBuilder implements the steps of construction.
+construct +buildPartB()
+getResult() : Product

ConcreteBuilder

. -—>{ o]
+buildPartA()

+buildPartB()
+getResult() : Product

3

Builder - A Car Builder

Car Engine
«enumeration»

-- >

STANDARD_ENGINE
SPORT_ENGINE
SMALL_ENGINE

* We want to construct different |- -
setEngine(Engine)
types of cars. +setinterior(Interior)

Interior
«enumeration»

* In this example, cars have an
engine and an interior. Lo

i |

PLASTIC_INTERIOR
WOODEN_INTERIOR
METAL_INTERIOR

}

«method» {
builder.buildCar () ;
builder.buildEngine () ;

\
\

}
(¢
«method» {

builder.buildInterior();

return builder.getCar();

}

Builder - A Car Builder

CarBuilder
CarConstructionDirector «abstract»
Car
carBuilder car.
+setCarBuilder(CarBuilder) +buildCar() . X
. . +setEngine(Engine)
+constructCar(ig N +buildEngine() +setinterior(Interior)
+getCar() : Carq ~~< - +buildInterior()
\ ~< +getCar() : Car
\ ~

Two Possible Car Builders

CarBuilder defines the methods to construct car parts. Concrete builders must implement these
methods. For convenience, the instantiation of cars (buildCar() is implemented in CarBuilder.

CarConstructionDirector is configured with a CarBuilder and calls the construction methods in the
correct order.

class CheapCarBuilder extends CarBuilder {
void buildEngine() {

car.setEngine(Engine.SMALL_ENGINE);
}

void buildInterior() {

car.setInterior(Interior.PLASTIC_INTERIOR);
}
}

class LuxuryCarBuilder extends CarBuilder {

void buildEngine() {
car.setEngine(Engine.SPORT_ENGINE);
¥

void buildInterior() {

car.setInterior(Interior.WOODEN_INTERIOR);
}

Assessment of the Builder Pattern
Advantages:

¢ Creation of objects can be configured at runtime.
e Concrete builders can use complex logic.

E.g. a car builder creating cars depending on available parts in storage.
e Good way to create composite structures.

Disadvantages:
* May yield many classes.

e Only works if all objects can be constructed using the same order.

Builder vs. Abstract Factory Pattern

® Abstract Factory focuses on creating multiple objects of a common family.
¢ Abstract Factory knows what object to create.

e Configuration is fixed after deployment of the software.

Takeaway

» Use Abstract Factory for creating objects depending on
finite numbers of factors you know in advance.

» Use Builder for creating complex objects depending on
unbound number of factors that are decided at runtime.

