
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Builder Pattern

Summer Semester 2015

The Builder Pattern

2

Divide the construction of multi-part
objects in different steps, so that
different implementations of these
steps can construct different
representations of object

+buildPartA()
+buildPartB()
+getResult() : Product

Builder
«interface»

Director

+construct

+buildPartA()
+buildPartB()
+getResult() : Product

ConcreteBuilder

«use»

Product

Builder - Structure

3

Builder defines the individual steps of the construction of Product.

Director knows in which order to construct Product.

ConcreteBuilder implements the steps of construction.

STANDARD_ENGINE
SPORT_ENGINE
SMALL_ENGINE

Engine
«enumeration»

Car

+setEngine(Engine)
+setInterior(Interior)

PLASTIC_INTERIOR
WOODEN_INTERIOR
METAL_INTERIOR

Interior
«enumeration»

Builder - A Car Builder

• We want to construct different
types of cars.

• In this example, cars have an
engine and an interior.

CarConstructionDirector

+setCarBuilder(CarBuilder)
+constructCar()
+getCar() : Car

Car

+setEngine(Engine)
+setInterior(Interior)

CarBuilder
«abstract»

+buildCar()
+buildEngine()
+buildInterior()
+getCar() : Car

carcarBuilder

«method» {
 return builder.getCar();
}

«method» {
 builder.buildCar();
 builder.buildEngine();
 builder.buildInterior();
}

Builder - A Car Builder

5

CarBuilder defines the methods to construct car parts. Concrete builders must implement these
methods. For convenience, the instantiation of cars (buildCar()) is implemented in CarBuilder.

CarConstructionDirector is configured with a CarBuilder and calls the construction methods in the
correct order.

Two Possible Car Builders
class CheapCarBuilder extends CarBuilder {
 void buildEngine() {
 car.setEngine(Engine.SMALL_ENGINE);
 }

 void buildInterior() {
 car.setInterior(Interior.PLASTIC_INTERIOR);
 }
}

class LuxuryCarBuilder extends CarBuilder {

 void buildEngine() {
 car.setEngine(Engine.SPORT_ENGINE);
 }

 void buildInterior() {
 car.setInterior(Interior.WOODEN_INTERIOR);
 }
}

6

Assessment of the Builder Pattern

Advantages:
• Creation of objects can be configured at runtime.
• Concrete builders can use complex logic.  

E.g. a car builder creating cars depending on available parts in storage.
• Good way to create composite structures.

Disadvantages:
• May yield many classes.
• Only works if all objects can be constructed using the same order.

Builder vs. Abstract Factory Pattern

• Abstract Factory focuses on creating multiple objects of a common family.
• Abstract Factory knows what object to create.
• Configuration is fixed after deployment of the software.

Takeaway
• Use Abstract Factory for creating objects depending on

finite numbers of factors you know in advance.  
E.g. if there are only three kinds of cars.

• Use Builder for creating complex objects depending on
unbound number of factors that are decided at runtime.  
E.g. if cars can be configured with multiple different parts.

7

