
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Command Pattern

Summer Semester 2015

open()
close()
cut()
copy()
paste()

Document

add(Document)

Application

add(MenuItem)

Menu

add(ToolIcon)

Toolbar

doAction()

MenuItem

doAction()

ToolIcon

OpenMenuItem FontMenuItem PasteMenuItem

OpenToolIcon FontToolIcon PasteToolIcon

Command Design Pattern
Motivating Example: A Document Editor

2

What do you think of this design?

Given some user operations such as "creating a document", "opening a file", "saving a document",
"printing a document", "cutting selected text" and "pasting it back in", we then want to be able to access
them from more than one place in the UI (a menu and a toolbar).

Assessment
The implementation of each MenuItem subclass is the same as the implementation of one of ToolIcon
subclasses.
Multiple copies of the same functionality → maintenance problem.

Need a mechanism for MenuItem and ToolIcon to share implementations.
Need to separate the user-interface control from it’s implementation so that implementations can be
shared.

Want to also support a general undo capability so that the user can reverse previous operations.

open()
close()
cut()
copy()
paste()

Document

add(Document)

Application

add(MenuItem)

Menu

clicked()

MenuItem

execute

Command

«method» {
 command.execute()
}

add(ToolIcon)

Toolbar

doAction()

ToolIcon

execute()

PasteCommand

execute()

FontCommand

execute()

OpenCommand

Solution: Decouple Invoker from Receiver

3

execute()

Command

execute()
buffer
PasteCommand

execute()

OpenCommand

«method» {
 String name = askUserForName();
 Document newDoc = new Document(name);
 app.add(newDoc); newDoc.open();
}

paste(...)
changeFont(...)

Document

getCurrentDocument()

Application

«method» {
 Document doc = app.getCurrentDoc();
 doc.paste(buffer);
}

app

Solution: Decouple Invoker from Receiver

4

Command Pattern -
Intent

5

Encapsulate a request to an object, thereby
allowing to:
• Issue requests without knowing the receiver

or the operation being requested.
• Parameterize clients with different requests.
• Queue or log requests and support

undoable requests.

«method» {
 receiver.action()
}

action()

Receiver

Client

Invoker

execute()

Command

execute()
state
ConcreteCommand

receiver

Command Pattern - Structure

6

• Command declares the interface for executing an operation.
• ConcreteCommand defines a receiver-action binding by implementing execute().
• Client creates a ConcreteCommand object, sets its Receiver, and configures the command of the

Invoker.
• Invoker asks its command to carry out the request.
• Receiver knows how to perform the operations associated with carrying out a request.

setCommand(c)
c:Command

 :Client :Invoker :Receiver

create

execute()action()

Command Pattern - Collaboration

7

pasteMenuItem : MenuItem

pasteCommand : CommandpasteButton : Button

pasteToolIcon : ToolIcon

Implementation Sharing

8

• A command centralizes an operation to a single location so that multiple copies of the code are not
necessary.

• Different user-interface controls can share the same implementation  
(e.g., a button, tool icon, and menu item can all perform the same operation).

• Decouples the user interface from the operation being performed.

execute()
unexecute()

Command

execute()
unexecute()

newFont
oldFont

FontCommand currentFont()
changeFont()
setLastCommand()
getLastCommand()

Document

getCurrentDocument()

Application

lastCommand

execute()
unexecute()

UndoCommand

«method» {
 Document doc = app.getCurrentDoc();
 Command lastCmd = doc.getLastCommand();
 lastCmd.unexecute();
} «method» {

 Document doc = app.getCurrentDoc();
 doc.changeFont(oldFont);
}

«method» {
 Document doc = app.getCurrentDocument();
 oldFont = doc.currentFont();
 doc.changeFont(newFont);
 doc.setLastCommand(this);
}

Supporting Undoable Operations

9

• Commands store enough information to undo the performed operation.
• Each command subclass implements its unexecute() function; when unexecute() is called the

command reverses its action.

execute()
unexecute()

Command

setLastCommand()
getLastCommand()

Document

lastCommand

execute()
unexecute()

Command

setLastCommand()
getLastCommand()

Document

commandHistory

Supporting Multiple Levels Of Undo

10

Single Level of Undo

Multiple Levels of Undo

• Undoing more than just the last command allows the user to back up farther and farther each time
undo is selected from the menu.

• Adding a redo feature: it would also be nice for a user to be able to redo an undone operation.  
Redo should have multiple levels corresponding to the number of undo's issued by the user.

past commands

present

Command History

present

1. undo

present

2. undo

present

1. redo

«code» { unexecute() }

«code» { unexecute() }

«code» { execute() }

Implementing a Command History

11

The command history can be seen as a list of past commands.
As new commands execute they are added to the front of the history.
To undo a command, unexecute() is called on the command at the front of the list.
The present pointer is moved past that command.
To undo the command before that, unexecute() is called on the next command in the history.
The present pointer is moved to point before that command.
To redo the command that was just undone, execute() is called on that command.
The present pointer is moved up past that command.

execute()

Command

execute()
add(Command c)

MacroCommand

execute()

Command

commands

...

«method» {
 for all c in commands {
 c.execute();
 }
}

Macro Commands

12

Takeaway
• Command allows to decouple the invoker of an operation

from the receiver of that operation.

• A Command object encapsulates the knowledge about a
concrete operation and a concrete receiver of that operation.

• As a result:

• the same invoker can be reused with different operation-
receiver pairs.

• the same operation-receiver pair can be plugged into
different invokers.

• commands can be queued, undone/redone, and
composed into macro-commands.

13

Example Scenario
In practice (in GUI applications), you often have multiple instances of the command design pattern which are related to
different kinds of actions.
1. The command pattern is used to associate some action with a menu item or a tool bar icon and which (as a second

step) then may require some further user input/interacts with the environment. These commands are usually not
stored in any command history as it makes no sense to redo/undo them (e.g., "open file", "save file", "copy text to
clipboard").

2. You have commands that update the state of an application (i.e., manipulates the application's data) and which you
may want to store in the command history because you want to be able to undo/redo the corresponding action.
These commands then have to offer an `execute` and `unexecute` methods.

Some commands, e.g., "paste clipboard content" are typically triggered by some user interaction, but do not require
any further user interaction and, hence, could be regarded as a command of the second type. But, this is deceiving.
Imagine that - at some later point in time - the user undos the last editing steps including the pasting of the clipboard
content. When the user then redos that step, he expects that the same content is added again as was just removed/
originally added – even if the clipboard content has changed in the meantime. Hence, even in this case we want to
distinguish between the command that interacts with the environment and the command that directly (after gathering
all information) with the document.

