
Exercise 4:
The Settlers of Catan

Software Engineering Design & Construction
SS 2015 - Dr. Michael Eichberg

In this exercise, you will design a simplified version of the board game The Settlers of Catan

1.

Introduction

Make yourself familiar with the game rules as specified in http://www.catan.com/files/downloads/catan_5th_ed_
rules_eng_150303.pdf. We assume a reduced set of game components, i.e., there are no

• sea frame pieces,

• harbor pieces

• Development Cards,

• Special Longest Road or Largest Army Cards,

• and no robber.

You can ignore all rules that refer to any of theses cards or pieces. For example, nothing happens if a player rolls a 7.
Your task is to design The Settlers of Catan as a computer game. Adhere to the five SOLID principles (Single Responsibility,
Open Closed, Liskov Substitution, Interface Segregation and Dependency Inversion).
First, think about a design for your class hierarchy. Decide for which game components you need classes and which
can be omitted or represented differently for a computer simulation. There should be two kinds of players, human and
computer players.
Second, think about how a turn of a game of two proceeds. Imagine it is the turn of a computer player in which it should

• attempt to trade a non-zero amount of resources with the other player (you choose the exact trade), and

• build a road and a settlement if it has the required resources2.

Think about the interface between a player and the game and how they interact with each other. Note that the game
logic needs to prevent cheating (doing things in the wrong order, building things the player doesn’t have the resources
for etc). Reduce the number of ways a player can cheat by carefully designing the interface and interactions between the
game logic and the player.
Since designing software is an incremental process, you might need to adapt your class design to address any deficiencies
you discover while thinking about the turn design.

1
http://www.catan.com/

2 You might want to read http://www.ibm.com/developerworks/rational/library/3101.html for how to model guards and conditions in
a sequence diagram.

1



Task
1

Classdesign
value: Int
resource(): Card

«abstract»
Tile

resource(): Card
 

ForestTile

distributeResources(dice: DiceRoll)
Crossing 1..31..6

tiles

occupiedBy: Option[Player]
cost(): List[Card]

Road

3

2 crossings

currentPlayer: Player
run()
checkWinner(): Option[Player]
nextPlayer()
distributeResources()

Game
1

* roads

1

*crossings

 
tradeProposed(cards: List[Card]): List[Card]
trade(cards:List[Card]): List[Card]
doTurn()

«abstract»
Player

 
 

AIPlayer
 
 

HumanPlayer

type: Enum[Lumber, …]
 

«trait»
Card

value(): Int
DiceRoll

proposeTrade(cards: List[Card]): List[(Player, List[Card])]
 

Trader

1

1..4

trader

players

1

2..4

game

1 *

cards

resource(): Card
 

…Tile

players

pointValue(): Int
cost(): Map[Card, Int]
resourceCount(): Int

player: Player

«abstract»
Settlement

 
pointValue(): Int
cost(): Map[Card, Int]
resourceCount(): Int

Village
 
pointValue(): Int
cost(): Map[Card, Int]
resourceCount(): Int

City

10..1
crossingoccupiedBy

value: Int {1<= value <= 6}

«value type»
Dice

1

2 dices

2



Task 2 Turn design

Game

run()

loop [checkWinner() = None]

currentRoll: 
DiceRoll

DistributeResources(currentRoll)
ref

currentPlayer: 
Player

nextPlayer()

doTurn()

trader: Trader

poposeTrade(…)

tadeOptions: 
List[(Player, List[Card])]

PerformTrade(tradeOption)
ref

BuildPhase()
ref

3



DistributeResources(diceRoll: DiceRoll)

Game

distributeResources()

foreach [c in crossings]

c: Crossing

distributeResources(diceRoll)

alt [c.occupiedBy != None]

foreach [t in tiles]

alt [c.value = diceRoll.value()]

loop c.occupiedBy.resourceCount() times

c.occupiedBy.player.cards += t.resource()

Task 3 SOLID

Task 3.1 Responsiblities

• Dice: Represents a single dice (a value between 1 and 6). Produces random values in that range.

• DiceRoll: Represents a dice roll in settlers. It consists of two dice. Produces a fair two dice roll.

• Game: Contains the main game logic and the board. Manages turns.

• Tile: A single board tile. Has a dice value (pays out on that value) and an associated resource.

• Crossing: Connects up to three tiles and roads. Can be occupied by a settlement.

• Road: A road between two crossings. Can be occupied by a player.

• Settlement: A settlement belongs to a player and is either a village or a city.

• Village: A settlement that produces one resource.

• City: A settlement that produces two resources.

4



• Player: Players can be either human players or AI players. Players are responsible for handling turns (trading,
building...).

• Trader: Manages trading between players.

• Card: Awarded for villages and cities producing resources. Used for building.

Task 3.2 S.O.L.I.D

• SRP: The design honours the single responsibility principle as the classes are kept small. E.g. the player class
consists only of methods relating to a turn and the therefore needed methods.

• OCP: The design honours the OCP principle. It is open for extension on both Tiles and settlements.

• LSP: LSP holds for the inheritance relations in the class diagram.

• ISP: There are no clients of any interface / trait in our design that are forced to depend on methods they do not
use, so we adhere to ISP.

• DIP: We adhere to DIP, as for example Game does not depend on HumanPlayer, but only on Player which is a
abstract class which all kinds of players have to inherit from. The same holds for Settlements and Tiles.

5


