
Task 3 - Dependency Graphs

1. Stopwatch

If val of evenodds == 0

If val of evenodds == 1

_time

time

true
Or

False
later

running
Time

t_0

lifeSign

temp

ticks

tclicks

stopstart

even-
odds

mouse
Released

E

2. Pong

x

y

racket
Bounds

ballIn
Racket

collision
Racket

leftWall rightWall

xBounce

yBounce

speedY

points
Player

points
CPU

score

bounded
YPos

bounds

mouseY

position

mouse
Change
Position

tick

speedX

ballArea

mouse
MovedE

mouse
DraggedE

speed.x -speed.x

speed.y

-speed.y

If ballInRacket == true

If ball moves to the
right

If ball moves to the
left

If ball moves up

If ball moves down

Task 4 – Stopwatch with Observers

1. Which implementation problems would you encounter and how would you solve them?

- introduce boilerplate code --> cannot be solved

- Constraints are not composable --> introduce chains of observers (observers observe

constraints to extending them by an update).

- Values could be updated too much --> implement conditional observers to mimic reduce

the updates.

- The need of different observer and observable type (to make it possible to observe

different events) --> implement them

2. How does a Framework like REScala help in this regard?

- Less Boilerplate code.

- Declarative events are more composable than observers that would help to compose

constraints.

- Events and Signals do have a good integration with Objects that removes the need of

different observer types

3. What trueOrFalse should be?

 trueOrFalse should always yield "true".

4. What in REScala makes sure that it is indeed the case?

Since "trueOrFalse" depends on "time" and "later", which also depends on "time", REScala

does ensure updates in topological order. Due to this, an update on "time" would trigger

the update algorithm. The "trueOrFalse"-Signal couldn't be updated because it depends on

"later" where the update is still pending and "trueOrFalse" only can be updated if all of

"trueOrFalse" 's children are updated already. When "later" gets its update, "trueOrFalse"

can be updated to

5. How would you solve it with observers?

One way to solve it is to use "time" as observable that is observed by a "later" observer

which is also observable. If "time" is updated it will notify "later" which can update itself

and store the new time value. "later" have to hold the values of "time" and its own now.

After that later could notify the last observer that is interested in the updated values,

"trueOrFalse". This ensures that "trueOrFalse" is always true.

6. How would you deal with dynamic dependencies in the observer-based implementation?

A possible solution to this is to register and unregister the observables depending on the

given condition. It is also necessary to observe whether the condition changes. If you

implement it this way, you have to make sure that you have some instance to query the

current state of the condition.

