
Exercise 7: Advanced
Inheritance and Analyzing
Code for Design Patterns
Due Thursday, July 2, 23:59

In the first part of the exercise, you will design and implement parts of a general, abstract framework for different kinds
of card games and then instantiate it for specific examples. Your solution should be as simple as possible. As a first step,
make yourself familiar with the code. Add your implementations in the corresponding places and test them thoroughly.
As a minimum requirement, your code must at least compile without errors.

In the second part of this exercise, you will analyze an existing code base for design patterns. Submit your solution as a
PDF.

Introduction of the first part

Card games often share a common structure. Moreover, the rules of many traditional card games are not set in stone
and can vary by region or be tweaked by a group of players. For an example, see the rules of Mau Mau at http://
en.wikipedia.org/wiki/Mau_Mau_(card_game). Variants of Mau Mau can be played with different card decks, various
rules assigned to different cards and other rule tweaks. Examples:

• You can play with any standard French or German deck. Uno, with its proprietary deck, can be regarded as a Mau
Mau variant as well.

• When a player plays a 2 or 7, the next player has to take two cards from the stock, unless s/he has a 2 or 7 as well.

• The next player has to skip a turn (commonly assigned to 8s).

• A player can set suit (commonly assigned to Jacks).

• A certain card reverses the turn order.

Task 1 The Cards Layer

As you can read on http://en.wikipedia.org/wiki/Playing_card, there are different kinds or decks of playing cards.
Most cards are ranked – e.g., 2, 3, ..., 10, Jacks, Queens, Kings, Ace – and suited (http://en.wikipedia.org/wiki/
Suit_(cards)). Not all of them, however, are both suited and ranked. There also exist different kinds of ranks (Full 52,
Piquet 32 etc) and suits (French, German, etc).
You should implement a composable class hierarchy similar to the Smart Home example from the lecture that models
different aspects of playing cards in different modules. The base module looks as follows:

trait Cards {
val deck: Seq[Card]
type Card <: TCard

trait TCard {
def name: String

}

val cardOrdering: Ordering[Card]
}

Model suited and ranked cards in their own subtraits SuitedCards and RankedCards (they might need to define additional
abstract member types similar to Card above) and compose them into a trait SuitedAndRankedCards.
Write two traits FullRankedCards and PiquetRankedCards that fix the ranks to the standard 52 (2 to Ace) and 32 (7 to
Ace) ranks, respectively.

1



As a concrete example, create a trait FullFrenchCards for a standard French 52 deck as described on http://en.
wikipedia.org/wiki/Standard_52-card_deck. (You don’t have to do the following, but think how you would create a
Piquet French deck, a German deck, or an Uno deck).
Put traits in a reasonable inheritance/mix-in hierarchy. Each trait should stay general (e.g. don’t fix the ranks in
SuitedCards), but make as many members (types and values) as concrete as you can (e.g., do implement value deck in
the topmost trait as you can).

Task 2 The Base Layer

Write a trait Game that uses trait Cards and defines all general components for a Mau Mau game. Document what your
types and traits represent. Your design should include the following:

• The number of players should be configurable.

• A player should be able to receive cards (used for the initial hand and during the game as a penalty) and play a
card.

• Implement the logic of a single player’s turn (not an entire turn for all players) in a method playersTurn(p: Player).
The logic must check that the player is playing according to the rules and is not cheating.

Instantiate at least two different games of Mau Mau with different decks and different rules (explain your rules in a
comment). Write a few tests that test the turn logic and that the checks against cheating or in place. For that, you need
to implement one or more dummy players.
Note that we do not ask you to implement the game logic of an entire game of Mau Mau, just the components and the
logic of the turn of a single player from above. Your rules must at least include that:

• One can play a card if it corresponds to the suit or value of the open card on the pile.

• There must be at least 2 cards with special meaning (take two, skip a turn, reverse the turn order, choose suit etc)

Task 3 Safety

Explain in a comment of your Game trait why a player cannot play cards from a wrong card deck. For example, in a
game of Mau Mau with a Standard 52 deck, a player cannot play cards from another French, German or Uno deck. What
exactly prevents a player from doing so?

Task 4 In Java?

Think about how you would design your framework in Java 7. Add a comment to your Scala Game trait that names
the difficulties that would arise compared to the Scala version. Hint: think about the features of Scala you use in your
solution and how your design benefits from them.

Task 5 Second Part: Scala 2.7 Collections

In the project for the second exercise, you will find the source code for the Scala 2.7 standard library, which contains a
collection hierarchy. Note: do not expect to be able to compile it with a current Scala compiler or in Eclipse. We know
that Scala 2.7 is an old version, but newer versions are too complex, please do not try to analyze other Scala versions
than 2.7. Analyze how the core of the collections hierarchy makes use of the following design patterns:

• Factory (any variant: abstract factory, factory method)

• Observer

• Strategy

• Template

Look at all of the following classes and traits and their corresponding companion objects:

• Everything in packages scala, scala.collection and scala.collection.mutable that directly or transitively inherits
from scala.Iterable.

2



• All base traits and base classes of the above traits and classes only if they participate in a pattern.

For each pattern name the participants, which roles they have, how they collaborate and how they might vary from the
standard text book examples. Explain the pattern in terms specific to the current pattern instance, e.g., don’t just copy
text from a design patterns book.
Your analysis should be complete and you should mention how often a specific pattern is used in comparison to others.
If a pattern is used in a similar way in many different places, give a detailed analysis of a single example and say how
other instances of the pattern in the collection hierarchy relate to it.

Task 6 Fragile Base Classes

Can you find an instance of the Fragile Base Class problem in the collections hierarchy? More precisely, can you find
either an instance of the problem,

• where everything works as expected, but where the behavior might break in the future because of a fragile base
class, or

• one where a method already behaves in a probably unexpected manner because it expects a self-call structure
different from the one that is in place (potentially because the base class behavior has been changed previously).

Say which classes are affected and explain which problems might or already do occur. Only consider classes and traits
that are already present in the hierarchy. You are not allowed to invent new classes, except for the purpose of making
traits concrete. You are not allowed to create new classes that override existing methods (otherwise you could easily
introduce the problem yourself).
Note: in contrast to the previous task, this analysis does not have to be complete. A single example of either one of the
above instances is enough.

Solve it on your own!

Although this exercise is not graded, it is highly recommended to do it by yourself. Just looking at a solution is much
easier in comparison to actually coming up with it.

Requirements if you want to submit your solution

You can, once in the semester, submit your solution to get it corrected. Send your solution to
weiel@st.informatik.tu-darmstadt.de. Make sure you zip your complete sbt project and make sure that is out of the
box working by running sbt run and sbt test. If the project doesn’t compile properly you will not receive any feedback!

3


