
Exercise 9: Pizza Delivery
and Building HTML Documents
Due Thursday, July 16, 23:59

Task 1 First Part: Order Management System

The word has spread about your successful implementation of the order management system (OMS) for Starbuzz Inc.
You received an email from the manager of TastyPizza Inc. who heard about your success. He wants you to implement a
new OMS for his pizza delivery shop. He has defined several requirements that need to be fulfilled by your OMS:

• The shop offers pizza, several beverages (lemonade, water and wine) as well as some franchise items (shirts,
mugs). The system needs to be able to represent these products.

• All products have a price and pizza and beverages have specific nutrition facts.

• An order should maintain a list of ordered products with all their associated information.

• Implement a bill printer that uses the interface introduced in the last subtask to print a bill in a simple but
readable format to a string. If the order contains alcohol, a notice for the delivery boy should be printed to verify
the customer’s age.

• Every pizza contains at least cheese and tomato sauce (Pizza Margherita). It can be combined with additional
toppings (ham, onions, etc.), which can be ordered multiple times.

• Pizzas with certain topping combinations are named, e.g., Hawaiian Pizza for the base pizza with ham and pineap-
ple. Those names should be contained in the bill. You do not need to auto-detect names for such combinations if
they are not explicitly requested in the order.

• In addition to the normal size, pizza can be ordered in family size.

The manager sent you the menu card of TastyPizza for a better understanding of their available items:

Pizzas Calories Price
Pizza Margherita (tomato, cheese) 1104 4.99
Hawaiian Pizza (tomato, cheese, ham, pineapple) 1024 6.49
Salami Pizza (tomato, cheese, salami) 1160 5.99
Family Size for Pizza x 1.95 + 4.15

Toppings Calories Price
Cheese 92 0.69
Ham 35 0.99
Onions 22 0.69
Pineapple 24 0.79
Salami 86 0.99

Drinks Calories Price
Lemonade (0.33l) 128 1.29
Water (0.5l) 0 1.29
Wine (0.75l, 13%) 607 7.49

Franchise Price
TastyPizza Shirt 21.99
TastyPizza Mug 4.99

Your tasks for this exercise are as follows:

1

• Implement an OMS library in Scala that can be used to manage orders for TastyPizza, Inc. You do not need to
implement a frontend, since your library should be integrated in an existing cashing software. Provide tests to
document the usage of your library. Provide at least 3 test cases that reflect the workflow of an order and print a
bill to the console.

• Your library design should use immutable objects, i.e., orders and pizzas are never changed in-place. For example,
adding a topping to a pizza creates a new pizza object.

• Use Scala objects instead of classes where possible.

• Use the Decorator Pattern to implement the different variations of pizza (additional toppings, family sized).

• Use the Visitor Pattern to implement the bill printer. Use a flexible variant of the visitor with two methods per
product: def startVisit(...) and def endVisit(...). It would visit some objects twice, for example, a pizza
once via startVisit(), then all its toppings, then the same pizza again via endVisit(). This will make certain
printing tasks easier.

• Create a UML class diagram that illustrates your design. If you are not familiar with a UML design tool, you can
scan a (clean!) hand drawn diagram.

Task 2 Extensions?

Is your retail system open for extensions? In particular, is it possible for clients to add items to the menu or extend the
system with additional operations? Does the Visitor Pattern variant discussed on Slides 6.5 help with the extensibility
issues you discovered and if so how? Elaborate in less than 150 words.
Submit your UML diagram and discussion as a PDF.

Second Part: Building HTML Documents

In the second exercise, you will develop a small library to build simple HTML documents. You will use different design
patterns and build documents that render images either as embedded PNGs, as linked PNGs, or in HTML 5 canvas
elements. In the project template, you will find partial implementations (they will not compile) and a test application
that creates a few test pages. Your implementation must adhere to the interface used in the given HTMLTests object, i.e.,
once you have implemented your library, HTMLTests will compile and open a few generated pages.

Task 3 Source Code Builder

Eventually we want to emit correctly indented HTML and Javascript code. Implement a builder SourceCodeBuilder that
helps you do that. You will find a template in the project that you simply need to complete.
The builder maintains a current level of indentation, which can be changed with methods indent() and unindent(). Note
that the builder needs to recognise when a new line is started in order to correctly indent the code. A new line is started
either by a call to newline() or by appending a string ending in ’\n’.
Most methods in SourceCodeBuilder have return type this.type, which simply means you have to return this at the end
of each method. This will allow you to do method call chaining such as in:

val age = 99

val b = new SourceCodeBuilder(" ")

b += "Hi, I am " += age += "years old."

Use a StringBuilder to implement SourceCodeBuilder, which is more efficient than composing strings.

Task 4 Document Builder

Implement a builder that lets clients gradually build HTML documents. Your implementation needs to be able to emit
HTML 5 as well as HTML 4 documents. Moreover, you should be able to generate single HTML documents and documents
that are split across multiple files.
Use the bridge pattern to implement these two axes of variability. When using the bridge pattern, one has two class
hierarchies, the abstraction and the implementation hierarchy. In this case, the implementation side should care about
emitting code for different HTML versions. The abstraction side cares about how to logically arrange the HTML document.
You will find the base traits of both sides in DocumentsBuilders and HTMLBuilders.
For this task, you need to do two things:

2

• Create two subclasses for HTMLBuilder as indicated in the project template. The only difference between them for
now is that they emit different DOCTYPE declarations (DTD). For HTML 5 it should simply be <!DOCTYPE html>. See
http://www.w3schools.com/tags/tag_doctype.asp for the HTML 4.01 Strict DTD. Use your SourceCodeBuilder
for the implementation side.

• Create two subclasses for DocumentBuilder as indicated in the project template. The SimpleDocumentBuilder will
emit HTML is a straightforward way, eventually creating a simple string containing a valid HTML document includ-
ing a DTD, head and body elements. The PaginatedDocumentBuilder will create a new HTML document each time
a client adds a <h1> headline. The new document will again be a valid HTML document including a DTD, head and
body elements, where the body will contain the headline and everything that follows until the next <h1> headline.
The result of PaginatedDocumentBuilder should be a Seq[String] and it should use a (fresh) SimpleDocumentBuilder
to build each page.

Task 5 Image Hierarchy

We now want to be able to add images to HTML documents. In order to do so, we first need a representation of them.
Since images can be either embedded into HTML (in Data URIs using Base64 encoding1), or linked via a URL, we want
to represent these two alternatives. It is important to notice that in the latter case, we don’t need to load the image data
into memory.
Therefore, develop a minimal image hierarchy to represent pixel images. In ex09.part2.Images, you will find the base
trait of the hierarchy, which is as follows (excluding comments):

trait Image {

def width: Int

def height: Int

def toPNG: Array[Byte]

}

The only way to obtain image data is via method toPNG, which returns the image in the PNG format. Create the following
two subclasses:

• Use the adapter pattern to adapt a java.awt.image.BufferedImage to your Image trait. You can obtain a PNG byte
array from a BufferedImage image as follows:

val out = new ByteArrayOutputStream

ImageIO.write(image, "png", out)

out.toByteArray()

• Use the proxy pattern to represent an image at a given URL. The proxy gets the width and height as constructor
arguments but the image data is loaded from the URL (using ImageIO.read()) only when needed. You will find
utility method Image.resizeImage() to scale a given image.

Create factory methods in the companion object of the Image trait to create images from a java.io.URL (using your proxy)
and a java.io.File (using your adapter and ImageIO.read()).

Task 6 HTML Images

Add a method image(ing: Image) to DocumentsBuilder and its implementations which adds an image element to the doc-
ument under construction. It should add a linked image as in <img src="http://upload.wikimedia.org/wikipedia/

en/7/78/Design_Patterns_cover.jpg"> if the given image is an instance of your image proxy. Otherwise, it should use
a Data URI with base64 encoding. You will find a utility method in the project template to convert PNG byte arrays to
base64 strings.

Task 7 Graphics

We now want to be able to add procedurally rendered images into an HTML document, i.e., draw lines and rectangles
into an HTML 5 canvas element or fall back to pre rendered PNG images for HTML 4. For this purpose, we need a canvas
to draw on. This canvas is in fact again an instance of the builder pattern.
Your tasks are:

1 See the HTML example on http://en.wikipedia.org/wiki/Data_URI_scheme#Examples

3

• You will find the base class Canvas of the canvas builder in the project template. Implement two subclasses,
HTML5Canvas and PNGCanvas. Class HTML5Canvas should eventually append HTML as follows:

<canvas id="canvas1" width="300" height="200"></canvas>

<script type="text/javascript">
function draw_canvas1() {

var canvas = document.getElementById(’canvas1’);

if (canvas.getContext) {

var c = canvas.getContext(’2d’);

c.fillStyle = ’rgba(255,0,0,0.5019607843137255)’;

c.fillRect(10,10,50,50);

c.fillStyle = ’rgba(0,0,255,0.5019607843137255)’;

c.fillRect(30,30,50,50);

};

};

draw_canvas1();

</script>

Class PNGCanvas should render the image into an in-memory BufferedImage and add a Data URI with base64
encoding.

• Add a method canvas(width: Int, height: Int)(c: Canvas => Unit) to your document builders. It accepts a
width and height of the canvas and a function that takes a handle to the canvas to construct. This function can
then draw shapes to the canvas, e.g.,:

builder.canvas(400, 300) { c =>

c.setColor(Color.Blue)

c.fillRect(50, 50, 100, 100)

c.setColor(Color.White)

c.drawLine(10, 10, 140, 140)

}

• For the previous point, you also need to modify your HTML builders to choose the right canvas instance.

The code template already contains a few utility methods and partial implementations for this task.

Task 8 Adapter Pattern?

Do traits help implementing the adapter design pattern? Please leave a comment in the HTML Builder Document imple-
mentation to answer this question!

Solve it on your own!

Although this exercise is not graded, it is highly recommended to do it by yourself. Just looking at a solution is much
easier in comparison to actually coming up with it.

Requirements if you want to submit your solution

You can, once in the semester, submit your solution to get it corrected. Send your solution to
weiel@st.informatik.tu-darmstadt.de. Make sure you zip your complete sbt project and make sure that is out of the
box working by running sbt run and sbt test. If the project doesn’t compile properly you will not receive any feedback!

4

