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What You Will Learn Today
• What a software product line (SPL) is 

• Challenges of SPLs 

• What are the phases of SPL engineering (SPLE) 

• Feature modeling (part of domain engineering) 

• Different domain implementation techniques 

• Some (advanced) research topics
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Software Product Lines
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“A software product line (SPL) is a set of 
software-intensive systems that share a 
common, managed set of features 

satisfying the specific needs of a particular 
market segment or mission and that are 

developed from a common set of core 
assets in a prescribed way.” 

— Software Engineering Institute 
Carnegie Mellon University



Advantages of SPLs 

• Tailor-made software 

• Reduced cost 

• Improved quality 

• Reduced time to market
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Success Stories
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Challenges of SPLs

• Upfront cost for preparing reusable parts 

• Deciding which products you can produce early on 

• Thinking about multiple products at the same time 

• Managing/testing/analyzing multiple products
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Feature-oriented SPLs

• Thinking of your product line in terms of the 
features offered
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Examples of a Feature
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Graph product-line

feature:  
edge color

feature:  
edge type 

(Directed vs Undirected)

feature:  
cycle detection



Examples of a Feature
• Database SPL Features: 

• Transactions 

• In-memory 

• Concurrency 

• Logging 

• Write access 

• …
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Feature
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18 2 A Development Process for Feature-Oriented Product Lines

1. Kang et al. (1990): “a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems”

2. Kang et al. (1998): “a distinctively identifiable functional abstraction that must
be implemented, tested, delivered, and maintained”

3. Czarnecki and Eisenecker (2000): “a distinguishable characteristic of a concept
(e.g., system, component, and so on) that is relevant to some stakeholder of the
concept”

4. Bosch (2000): “a logical unit of behavior specified by a set of functional and
non-functional requirements”

5. Chen et al. (2005): “a product characteristic from user or customer views, which
essentially consists of a cohesive set of individual requirements”

6. Batory et al. (2004): “a product characteristic that is used in distinguishing
programs within a family of related programs”

7. Classen et al. (2008): “a triplet, f = (R, W, S), where R represents the require-
ments the feature satisfies, W the assumptions the feature takes about its environ-
ment and S its specification”

8. Zave (2003): “an optional or incremental unit of functionality”
9. Batory (2005): “an increment of program functionality”

10. Apel et al. (2010): “a structure that extends and modifies the structure of a
given program in order to satisfy a stakeholder’s requirement, to implement and
encapsulate a design decision, and to offer a configuration option”

The first seven definitions treat features mainly as a means to communicate
between the different stakeholders of a product line (end users, managers, pro-
grammers, and so forth), in order to distinguish software products. The last three
definitions treat features as design decisions and implementation-level concepts that
are part of the software construction phase. These different views on features stem,
of course, from the different use of features in the different phases of product-line
engineering. To capture the essence and commonalities of prior usage, we define
features as follows:

Definition 2.1 A feature is a characteristic or end-user-visible behavior of a
software system. Features are used in product-line engineering to specify and
communicate commonalities and differences of the products between stake-
holders, and to guide structure, reuse, and variation across all phases of the
software life cycle. !

The product portfolio of a product line is defined by its features and their relations.
A specific product is identified by a subset of features, called a feature selection. Not
all feature selections are valid and specify meaningful products. As we saw in the
previous chapter, the features Toasted and Not toasted of a sandwich are mutually
exclusive; so too are the exterior car trims Standard, Luxury, Premium, and Platinum.
A constraint on the feature selection is called a feature dependency. Feature depen-



Exercise: 
What features would a 

car SPL contain?
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• Constraints on the possible feature selections

Feature Dependencies

feature:  
directed

feature:  
cycle detection

depends on



Product
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2.1 Features and Products 19

dencies are modeled explicitly in product lines as part of feature modeling, which
we discuss later.

Definition 2.2 A product of a product line is specified by a valid feature
selection (a subset of the features of the product line). A feature selection is
valid if and only if it fulfills all feature dependencies. !

Features, feature selections, feature constraints, and products arise in all kinds
of product lines, and are not limited to software product lines. In the following
sections, we discuss the role of features in the product-line engineering process. We
introduce feature models as a formalism to describe features and their constraints.
Finally, a translation of feature model to propositional logic opens the door for formal
methods of analyzing product-line variability.

2.2 A Process for Product-Line Development

Most processes of traditional software engineering target the life cycle of a single
software system. Independent of the specifics of the process used, developers collect
requirements for the target system, and design and implement the system, either in
separate, consecutive phases or in agile cycles. For software product lines, we must
change our way of thinking about software development. In contrast to analyzing
and implementing a single system, we have to look at a variety of desired systems
that are similar but not identical.

A key success factor of product-line development is to set a proper focus on a
particular, well-defined and well-scoped domain.

Definition 2.3 A domain is an area of knowledge that:

• is scoped to maximize the satisfaction of the requirements of its stakeholders,
• includes a set of concepts and terminology understood by practitioners in

that area,
• and includes the knowledge of how to build software systems (or parts of

software systems) in that area.

(Adopted from Czarnecki and Eisenecker (2000), p. 34) !
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Table 1.1 Data management in automotive systems

Subsystem Persistence Recovery Consistency Queries Granularity

Navigation system ! ! SQL Database
Driver’s logbook ! ! ! Cursor Tables
Total distance recorder ! ! ! Fetch Tuple
Number of revolutions recorder ! Integer

Example 1.4 Data management for embedded systems. State-of-the-art relational
database systems support a rich set of features such as multi-user operation, high-
level query languages, and powerful query optimization. However, they are much
too complex and heavyweight to be used in embedded systems, such as in sensors
networks or mobile devices. Still, features such as persistence, recovery, and index
structures are needed in embedded systems, too. The inability to size-down fully-
fledged database systems by stripping and replacing unnecessary features led to
separate development lines of data management for embedded systems, henceforth
called embedded data management.

Storing data is at the heart of every product in the domain of embedded data
management, although different products may support different data types and stor-
age structures. Support for transactions and recovery are typical, but may not be
required in all application scenarios. Providing a single implementation for all sce-
narios is infeasible, because of the overhead of unused code on systems with restricted
resources. In Table 1.1, we show different requirements for data management used
in embedded automotive systems.

Embedded data management is a perfect candidate for using a product-line
approach. Leich (2012) provides a comprehensive overview of the state of the art
in this field. In this book, we refer to two research prototypes of product lines for
embedded data management: FameDBMS (Rosenmüller et al. 2008) and the feature-
oriented refactoring of Berkeley DB (Rosenmüller et al. 2009a), which we introduce
in the respective chapters. !

Example 1.5 A product line of a graph library. To illustrate variability implementa-
tion techniques at a technical level, the scenario for embedded data management is
still too complex, and domain concepts would distract from technical issues (How to
implement a B-tree?). Hence, we use a simple product line of graph data structures
for this task. It was introduced by Lopez-Herrejon and Batory (2001) as a standard
problem to discuss and compare product-line techniques and has been used in hun-
dreds of publications since. The core of its implementation fits on less than a page.
In practice, though, this example would mostly like not be target of a product-line
approach because of its simplicity.

At the source-code level, we use the graph library as our main technical example
throughout the book. It constitutes a product line of implementations of graph data
structures and algorithms. The base implementation language is Java. The listing
in Fig. 1.5 gives an impression of how graph data structures with nodes and edges
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Fig. 2.1 Overview of an engineering process for software product lines

In the past, software product lines have been developed for a wide variety of
domains, including operating systems, database systems, middleware, automotive
software, compilers, healthcare applications, and many more.

The broader the domain of a product line is the larger is the number of possible
stakeholders’ requirements that can be covered in the form of individually tailored
products. However, the broader the domain, the smaller is the set of similarities
among products. For example, the domain of system software is huge, which includes
operating systems, drivers, network software, database systems, and many more.
Although there are similarities that could be exploited in system software, individual
systems have substantial differences, which decrease potential for reuse. Focusing on
the (sub)domain of database systems or even embedded database systems, increases
the reuse potential, while keeping maintenance effort acceptable. The bottom-line is
that a proper scoping of the target domain is essential, as we discuss further in Sect.
2.2.1.

A development process for software product lines has to take these peculiarities
into account. Two issues play a crucial role: the explicit handling of variability and
the systematic reuse of implementation artifacts. For both, an appropriate structuring
of process and software artifacts is imperative.

The specific characteristics of software product lines lead to a separation between
domain engineering and application engineering and between problem space and
solution space. In Fig. 2.1, we illustrate a two-dimensional structure with four clusters
of tasks in product-line development and the mappings between them, which we
explain next.
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Domain Analysis
• Domain scoping 

• Deciding on product line’s extent or range 

• Domain modeling 

• Captures & documents the commonalities & 
variabilities of the scoped domain 

• Often captured in a feature model
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Fig. 2.6 A possible feature diagram of the graph library

A possible feature diagram for the graph library is shown in Fig. 2.6. The root is
labeled with GraphLibrary to represent a graph product (that is, a graph library). It has
a mandatory child feature EdgeType, because each graph library has to implement
an edge type, which is either Directed or Undirected. Furthermore, three other child
features of the root are optional: Search, Weighted, and Algorithm. Search strategies
may be either breadth-first search (BFS) or depth-first search (DFS). Algorithm offers
a selection of graph algorithms as child features. Since it is optional, either zero, one,
or more algorithms may be present in a graph product. In our example, the algo-
rithm for minimal spanning trees MST has two alternative implementations, Prim and
Kruskal. Some non-local conditions are modeled as explicit Boolean constraints—for
example, minimal spanning trees make only sense for weighted graphs, and shortest
paths can be computed for directed graphs only.

Next, we use the feature diagram to illustrate the mapping to a propositional
formula as introduced in Definition 2.4. The diagram is equivalent to the following
conjunction:

root(GraphLibrary)

∧ mandatory(GraphLibrary,EdgeType)

∧ optional(GraphLibrary,Search)

∧ optional(GraphLibrary,Weighted)

∧ optional(GraphLibrary,Algorithm)

∧ alternative(EdgeType,{Directed,Undirected})

∧ or(Search,{BFS,DFS})

∧ or(Algorithm,{Cycle,ShortestPath,MST,Transpose})

∧ alternative(MST,{Prim,Kruskal})

∧ (MST ⇒ Weighted)

∧ (Cycle ⇒ Directed)

∧ (· · · )
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For our presentation, we concentrate on Boolean features identified by a name.
In principle, non-Boolean features or attributes of features may also be of interest
in distinguishing products. For example, in a system supporting parallelization, the
number of supported processors may lead to different products. Several dialects of
feature models support non-Boolean features or non-Boolean attributes of features.

2.3.3 Formalization in Propositional Logic

Feature diagrams can be directly mapped to propositional formulas, thereby defining
a formal semantics of feature diagrams. All feature names from the set F of feature
names are interpreted as propositional variables. In the following, p, f and fi
exemplify members of F.

A mandatory feature definition mandatory(p,f) between a parent feature p and
a child feature f (denoted by a filled bullet at the child feature f) corresponds to a
logical equivalence. That is, whenever the parent feature is selected, so too must the
child and vice versa:

mandatory(p,f) ≡ f ⇔ p

An optional feature, denoted by an empty bullet, is written as optional(p,f)
and corresponds to implication. The implication states that the parent p may be
chosen independently from f, but the child f can only be chosen if p is selected:

optional(p,f) ≡ f ⇒ p

The alternative constraint defines a one-out-of-many choice and is denoted by
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For our presentation, we concentrate on Boolean features identified by a name.
In principle, non-Boolean features or attributes of features may also be of interest
in distinguishing products. For example, in a system supporting parallelization, the
number of supported processors may lead to different products. Several dialects of
feature models support non-Boolean features or non-Boolean attributes of features.

2.3.3 Formalization in Propositional Logic

Feature diagrams can be directly mapped to propositional formulas, thereby defining
a formal semantics of feature diagrams. All feature names from the set F of feature
names are interpreted as propositional variables. In the following, p, f and fi
exemplify members of F.

A mandatory feature definition mandatory(p,f) between a parent feature p and
a child feature f (denoted by a filled bullet at the child feature f) corresponds to a
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Fig. 2.3 Graphical notation
for a one-out-of many choice.
This choice corresponds to a
generalized xor operator

Fig. 2.4 Graphical notation
for a some-out-of-many
choice. This choice corre-
sponds to the logical or
operator

different technical platforms such as the choice of the supported operating system.
This construct is called alternative or mutually exclusive choice.

Figure 2.4 shows child features connected via a filled arc. This graphical element
denotes an unrestricted choice of one or more features out of a feature group. It is
chosen if, at least, one feature of the collection has to be selected, but there are no
other restrictions. Mathematically, it denotes an inclusive disjunction.

Example 2.9 Selecting one or several supported data types for storage is an example
for an unrestricted choice in the domain of embedded data management. For the
graph library, we may select one or more algorithms (any combination of algorithms
is possible). !

The notational elements of feature diagrams support a natural description of a wide
range of variability schemata, but not all. More general restrictions are needed in the
form of propositional logic constraints. Typical constraints are implications between
features located in different parts of the feature hierarchy, for example, to express that
a certain algorithm requires a special data structure or that a certain function is not
available for a certain operating system. Additional constraints can be simply added
as arrows or in textual form to the diagram. Those additional constraints may span
large parts of the feature diagrams and are therefore called cross-tree constraints.

There is no clear rule of when to use a hierarchical decomposition and when to
use cross-tree constraints. In principle, all feature dependencies could be expressed
as cross-tree constraints over features that are all marked as optional. Typically,
a hierarchical decomposition is used to structure a maximal space of features, whereas
cross-tree constraints are used sparingly for remaining constraints that do not fit into
the chosen hierarchy. As usual in modeling, there is no single ‘best’ answer. We will
see in Sect. 2.3.3 that there can be many equivalent answers.
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For our presentation, we concentrate on Boolean features identified by a name.
In principle, non-Boolean features or attributes of features may also be of interest
in distinguishing products. For example, in a system supporting parallelization, the
number of supported processors may lead to different products. Several dialects of
feature models support non-Boolean features or non-Boolean attributes of features.

2.3.3 Formalization in Propositional Logic

Feature diagrams can be directly mapped to propositional formulas, thereby defining
a formal semantics of feature diagrams. All feature names from the set F of feature
names are interpreted as propositional variables. In the following, p, f and fi
exemplify members of F.

A mandatory feature definition mandatory(p,f) between a parent feature p and
a child feature f (denoted by a filled bullet at the child feature f) corresponds to a
logical equivalence. That is, whenever the parent feature is selected, so too must the
child and vice versa:

mandatory(p,f) ≡ f ⇔ p

An optional feature, denoted by an empty bullet, is written as optional(p,f)
and corresponds to implication. The implication states that the parent p may be
chosen independently from f, but the child f can only be chosen if p is selected:

optional(p,f) ≡ f ⇒ p

The alternative constraint defines a one-out-of-many choice and is denoted by
an empty arc in feature diagrams. The definition alternative(p,{f1,...,fn}) has
as first parameter the parent feature f and as second parameter a non-empty set
{f1,...,fn} of child features. Mapped to propositional logic, this is a disjunction, in
which, at least, one child feature is selected when the parent is chosen. Additionally,
we ensure for each pair of child features that no two child features are selected
together.

alternative(p, {f1, ..., fn}) ≡ ((f1 ∨ . . . ∨ fn) ⇔ p) ∧
∧

i<j

¬(fi ∧ fj)

An unrestricted choice or or, denoted by a filled arc in feature diagrams, defines a
some-out-of-many choice. Again, the definition choice(p,{f1,...fn}) has as second
parameter a non-empty set of child features. Mapped to propositional logic, the
selection of p is equivalent to a disjunction of the child features.

or(p, {f1, ...fn}) ≡ (f1 ∨ . . . ∨ fn) ⇔ p
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Fig. 2.6 A possible feature diagram of the graph library

A possible feature diagram for the graph library is shown in Fig. 2.6. The root is
labeled with GraphLibrary to represent a graph product (that is, a graph library). It has
a mandatory child feature EdgeType, because each graph library has to implement
an edge type, which is either Directed or Undirected. Furthermore, three other child
features of the root are optional: Search, Weighted, and Algorithm. Search strategies
may be either breadth-first search (BFS) or depth-first search (DFS). Algorithm offers
a selection of graph algorithms as child features. Since it is optional, either zero, one,
or more algorithms may be present in a graph product. In our example, the algo-
rithm for minimal spanning trees MST has two alternative implementations, Prim and
Kruskal. Some non-local conditions are modeled as explicit Boolean constraints—for
example, minimal spanning trees make only sense for weighted graphs, and shortest
paths can be computed for directed graphs only.

Next, we use the feature diagram to illustrate the mapping to a propositional
formula as introduced in Definition 2.4. The diagram is equivalent to the following
conjunction:

root(GraphLibrary)

∧ mandatory(GraphLibrary,EdgeType)

∧ optional(GraphLibrary,Search)

∧ optional(GraphLibrary,Weighted)

∧ optional(GraphLibrary,Algorithm)

∧ alternative(EdgeType,{Directed,Undirected})

∧ or(Search,{BFS,DFS})

∧ or(Algorithm,{Cycle,ShortestPath,MST,Transpose})

∧ alternative(MST,{Prim,Kruskal})

∧ (MST ⇒ Weighted)

∧ (Cycle ⇒ Directed)

∧ (· · · )
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After expanding the feature constraints, we arrive at the following formula:

GraphLibrary

∧ (EdgeType ⇔ GraphLibrary)

∧ (Search ⇒ EdgeType)

∧ (Weighted ⇒ EdgeType)

∧ (Algorithm ⇒ EdgeType)

∧ (((Directed ∨ Undirected) ⇔ EdgeType) ∧ ¬(Directed ∧ Undirected))

∧ ((BFS ∨ DFS) ⇔ Search)

∧ ((Cycle ∨ ShortestPath ∨ MST ∨ Transpose) ⇔ Algorithm)

∧ (((Prim ∨ Kruskal) ⇔ MST) ∧ ¬(Prim ∧ Kruskal))

∧ (MST ⇒ Weighted)

∧ (Cycle ⇒ Directed)

∧ (· · · )

Both the diagram and formula are incomplete where ellipses appear.
The graph example does not contain an alternative construct with more than

two child features. To illustrate the transformation to propositional logic for such
situations, we use an additional example. Assume that our product line runs on
different operating systems. This is modeled by a feature OS with three different
alternative child features Linux, Win and Mac. Figure 2.7 shows the corresponding
subtree of the feature diagram. This leads to the feature constraint alternative(OS,
{Linux, Win, Mac}), which translates into the following formula:

(
OS ⇔ (Linux∨Win∨Mac)

)
∧

(
¬(Linux∧Win)∧¬(Linux∧Mac)∧¬(Win∧Mac)

)

The number of pairwise exclusions is quadratic in the number of alternative features
(each combination of two alternative features forms a negated clause).

2.3.5 Variations and Extensions of Feature Models

Feature models are widely used in research and practice. However, no standardized
modeling format has been accepted, so far. Standards are on the way—at the time of

Fig. 2.7 Feature diagram for
alternative operating systems
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• Underlying code must be variable 
• Dimensions of implementation techniques 

• Binding times: compile-time binding, load-time 
binding, and run-time binding. 

• Representation: annotation vs composition
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(a) Annotation-based approach (b) Composition-based approach

Fig. 3.1 Annotation-based and composition-based approaches to product-line implementation

demand), and composition-based approaches support positive variability (compo-
sition units are added on demand), or that annotation-based approaches separate
concerns virtually and composition-based approaches separate concerns physically
(see Chap. 7 for a more detailed discussion). Finally, we would like to emphasize that
annotation and composition are two special but important instances of the broader set
of possible program-generation and program-transformation mechanisms that can be
used for product-line development. We illustrate the principle differences between
annotation-based and composition-based approaches to product-line implementation
in Fig. 3.1.

3.2 Quality Criteria

A key objective of this book is to convey that different implementation techniques
for product-line development have different characteristics and mutual strengths and
weaknesses. To assess tradeoffs and compare implementation strategies, we intro-
duce and discuss six quality criteria that product-line implementation techniques
should ideally meet: Low preplanning effort, feature traceability, separation of con-
cerns, information hiding, granularity, and uniformity. As we will explain, not all
quality criteria may be met at the same time, as some quality criteria pursue conflict-
ing goals. Hence, different implementation strategies focus on different criteria and
make different tradeoffs.

3.2.1 Preplanning Effort

Independently of the adoption path, product-line engineering always incurs a certain
amount of preplanning (of course, more in the proactive approach than in the reactive
approach, but still). Which features will be requested? Which features are likely to
interact? Where will one feature extend the implementation of another feature?
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Fig. 1.5 Graph library: an implementation example

are realized. Although small, there is a considerable number of features to vary:
vertices and edges can be colored, edges directed or undirected, edges can be stored
as separate objects or adjacency lists, and so forth. One can also choose among a
diverse selection of algorithms that work on graphs in different configurations, such
as detecting cycles, searching shortest paths, and computing the minimal spanning
trees.

In addition to the features that have an effect on externally visible functionality,
there is also variability in the internal implementation, for example, how edges are
represented (such as, using explicit objects or implicit links between vertices). For
instance, as an alternative to the implementation in Fig. 1.5, we could store adjacent
nodes inside class Node. !

1.8 Intended Audience of the Book

In the last 15 years, several books have discussed issues of software product lines.
How is this book different?

We provide a special perspective on software product lines: We take a developer’s
viewpoint that focuses on the development, maintenance, and implementation of
product-line variability. We blend out most management issues, such as require-
ments analysis, scoping and portfolio management, and team organization. The con-
cept of a feature pervades the entire life cycle, including design, implementation,
and validation and verification. In short, features are a central concept in all phases
of product-line development. Furthermore, we concentrate on automated product
derivation based on a user’s feature selection.

As a result, this book is unique for the following reasons:

• Features are central to variability. We introduce feature models in Chap. 2 and use
features throughout remaining chapters to guide product-line development.
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Fig. 4.1 Graph library: Variability implemented with parameters

computing overhead. In our example of Fig. 4.1, even though we know that we
never use feature Colored, the application still contains class Color, evaluates an
additional if statement whenever a method print is called, and requires memory for
an additional field of every node and edge object. Third, we cannot even prevent
others from instantiating objects or invoking methods of deactivated feature code,
other than throwing run-time errors (see method add in Lines 19–28 of Fig. 4.1).
Finally, shipping unused code opens unnecessary potential targets for attacks, such
as buffer-overflow attacks.

• It is possible to alter a feature selection without stopping the program. However,
run-time changes are nontrivial in general, as a feature’s code may depend on
certain initialization steps or assume certain invariants. For example, in Fig. 4.1,
we might run into a null-pointer exception, if we enabled Weight at run time,
because the field weight of previously created edges was uninitialized. In such
cases, it might be easier to require a restart of the program, when configuration
parameters change.

• An advantage of passing configuration parameters as method arguments (in con-
trast to using global variables or using compile-time variability) is that different
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Fig. 4.4 Graph library: Variability between weighted and unweighted graphs with the template-
method pattern

suited for combining multiple features, due to limitations of inheritance (see the
discussion in Fig. 4.9, p. 78).

Similar to the other patterns, the template-method pattern separates feature code
from base code (see separation of concerns in Sect. 3.2.3, p. 55). Feature code is
placed in distinct classes and induces a moderate run-time overhead, due to addi-
tional invocations of virtual methods. Some authors classify variation through the
template-method pattern as a distinct implementation strategy ‘inheritance’ or ‘sub-
type polymorphism’ (Anastasopoules and Gacek 2001; Muthig and Patzke 2002).

4.2.3 Strategy Pattern

The strategy pattern aims at variability in algorithms, similar to the template-
method pattern. The strategy pattern is different in that it uses delegation instead
of inheritance. Instead of writing an abstract method to be overridden by clients, a

Graph
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…

Unweighted Graph

+ createEdge(Node, Node)
...

…

WeightedGraph
…
+ createEdge(Node, Node)
...
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Fig. 5.5 A build script for the graph example without variability (left) and with variability (right)

script first removes all old class files, subsequently compiles all Java files of the graph
example, and finally packages all resulting class files in a JAR file for distribution.

Now, let us introduce variability into this build script. In Fig. 5.5 (right), we check
whether the parameter withColor is provided, and we compile one of two implemen-
tations of the classes Node and Edge, one with and one without colors. Further, we
compile class Color conditionally. In this example, we use the parameter approach
from Sect. 4.1 and apply it at build-system level. Depending on the parameters, dif-
ferent files are compiled and packaged.

Instead of passing configuration options to the build script as command-line para-
meters, build systems can read configuration options also from configuration files
(potentially generated by a feature-selection tool). Furthermore, build systems can
determine configuration options automatically by inspecting the current context; for
example, they can read the operating system’s localization settings or detect whether
certain hardware features or software libraries are available.

When building against external libraries, variability in a build script can control in
which libraries (and which library revision and variant) the product is compiled with
(van der Storm 2004). Finally, features can control how files are compiled, including
triggering optimizations and including debugging information.

5.2.2 Custom Build Scripts

Staples and Hill (2004) describe a setup in which product line developers create
a custom build script for each customer (that is, for each product of the product
line). They store a base implementation in one directory and customer-specific build
scripts together with corresponding customer-specific extensions in other directories.
A customer-specific build script may replace files from the base implementation and
can add additional files to the build (see Fig. 5.6).
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Exercises 127

5.6 Explain the difference between lexical and syntactic preprocessors and provide
corresponding examples. What are their mutual strengths and weaknesses? What
might be a reason that most preprocessors used in practice are lexical preprocessors?
5.7 Locate and classify the errors in the following three code snippets. Discuss the
role of the preprocessor for introducing and locating errors. What is the relation to
annotation discipline?

1 int a = 1;
2 int b = 0;
3 #ifdef A
4 int c = a;
5 #else
6 char c = a;
7 #endif
8 if (c) {
9 #ifdef B

10 c += a;
11 c /= b;
12 }
13 #endif

(a)

1 int a = 1;
2 int b = 0;
3 #ifdef A
4 char c[] = a;
5 #else
6 int c = a;
7 #endif
8 if (c) {
9 #ifdef B

10 c += a;
11 c /= b;
12 #endif
13 }

(b)

1 int a = 1;
2 int b = 0;
3 #ifdef A
4 int c = a;
5 #else
6 char c = a;
7 #endif
8 if (c) {
9 c += a;

10 #ifdef B
11 c /= b;
12 #endif
13 }

(c)

5.8 Reconsider the scenarios of Exercise 2.9 (page 43). Which implementation
approach would you recommend to the developers and why? Would you give addi-
tional advice on how to use these implementation mechanisms?
5.9 Extend the comparison of Exercise 4.11 (page 101) with the additional imple-
mentation strategies from this chapter.

Can you 
spot the 
error?
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Compile time: 
no matching closing 
braces when B is not 
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Runtime: 
division by zero 

when B is selected

Compile time: 
no matching closing 
braces when B is not 

selected
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12 1 Software Product Lines

Table 1.1 Data management in automotive systems

Subsystem Persistence Recovery Consistency Queries Granularity

Navigation system ! ! SQL Database
Driver’s logbook ! ! ! Cursor Tables
Total distance recorder ! ! ! Fetch Tuple
Number of revolutions recorder ! Integer

Example 1.4 Data management for embedded systems. State-of-the-art relational
database systems support a rich set of features such as multi-user operation, high-
level query languages, and powerful query optimization. However, they are much
too complex and heavyweight to be used in embedded systems, such as in sensors
networks or mobile devices. Still, features such as persistence, recovery, and index
structures are needed in embedded systems, too. The inability to size-down fully-
fledged database systems by stripping and replacing unnecessary features led to
separate development lines of data management for embedded systems, henceforth
called embedded data management.

Storing data is at the heart of every product in the domain of embedded data
management, although different products may support different data types and stor-
age structures. Support for transactions and recovery are typical, but may not be
required in all application scenarios. Providing a single implementation for all sce-
narios is infeasible, because of the overhead of unused code on systems with restricted
resources. In Table 1.1, we show different requirements for data management used
in embedded automotive systems.

Embedded data management is a perfect candidate for using a product-line
approach. Leich (2012) provides a comprehensive overview of the state of the art
in this field. In this book, we refer to two research prototypes of product lines for
embedded data management: FameDBMS (Rosenmüller et al. 2008) and the feature-
oriented refactoring of Berkeley DB (Rosenmüller et al. 2009a), which we introduce
in the respective chapters. !

Example 1.5 A product line of a graph library. To illustrate variability implementa-
tion techniques at a technical level, the scenario for embedded data management is
still too complex, and domain concepts would distract from technical issues (How to
implement a B-tree?). Hence, we use a simple product line of graph data structures
for this task. It was introduced by Lopez-Herrejon and Batory (2001) as a standard
problem to discuss and compare product-line techniques and has been used in hun-
dreds of publications since. The core of its implementation fits on less than a page.
In practice, though, this example would mostly like not be target of a product-line
approach because of its simplicity.

At the source-code level, we use the graph library as our main technical example
throughout the book. It constitutes a product line of implementations of graph data
structures and algorithms. The base implementation language is Java. The listing
in Fig. 1.5 gives an impression of how graph data structures with nodes and edges

HOTPLUG
USB
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6.1 Feature-Oriented Programming 137

Fig. 6.6 Containment hierarchy (left) and feature model (right) of the graph example

WeightedGraph = Weighted • BasicGraph

ColoredWeightedGraph = Colored • Weighted • BasicGraph

AHEAD (Algebraic Hierarchical Equations for Application Design) is the successor
of GenVoca (Batory et al. 2004). It scales the ideas of GenVoca to all kinds of software
artifacts, thus applying the principle of uniformity (see Sect. 3.2.6) to feature-oriented
programming. That is, a feature consists not only of source code but of all artifacts
that contribute to that feature, including documentation, test cases, design documents,
makefiles, performance profiles, and mathematical models.

The AHEAD tool suite implements these ideas. It contains several tools for devel-
oping, debugging, and composing code and noncode artifacts. As said previously,
each feature is represented by a containment hierarchy, which is a directory that
maintains a substructure organizing the feature’s artifacts (see Fig. 6.6). Compos-
ing features means composing containment hierarchies and, to this end, composing
corresponding artifacts recursively by name and type (see Fig. 6.8 for an example).
For each artifact type, a different implementation of the composition operator ‘•’
(that is, a tool that performs the composition) has to be provided in AHEAD, much
like Jak for Java artifacts. For example, the graph implementation of Fig. 6.2 may be
paired with documentation in HTML, as illustrated in Fig. 6.7.

Distinct composition tools have been created to work with particular kinds of
software artifacts. That is, there is a special tool for defining and composing Jak
representations of programs, there is another special tool for defining and composing
XML artifacts, and so on. For each artifact type, at least one special tool has to be built.

See http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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Fig. 6.3 A simple graph implementation (feature module BasicGraph)

6.1.3 The Jak Language

Jak is an extension of Java for feature-oriented programming (Batory et al. 2004). In
Fig. 6.3, we show the Jak implementation of our graph example as a feature module.
It consists of the classes Graph, Node, and Edge. Except keyword layer, which denotes
the feature a class belongs to, the Jak code in Fig. 6.3 is not different from plain Java
code.

Roles that extend existing classes are implemented using class refinements,
denoted by keyword refines. A class refinement can add new members to a class
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Fig. 6.4 Extending the basic graph implementation by introducing weights to edges (feature module
Weighted)

and extend existing methods. A method extension is implemented by method over-
riding and calling the overridden method via the keyword Super.2

In Fig. 6.4, we show feature Weighted implemented in Jak. It introduces a new
class Weight that represents the weight of an edge (bottom) and refines (applies a role
to) class Graph (top) by introducing a new method add that assigns a given weight
value to an edge, and by overriding the existing method add to assign a default weight
value. Furthermore, it refines class Edge (middle) by adding a field and by extending
the print method to display the weight.

Class refinement is a form of mixin-based inheritance (Bracha and Cook 1990;
Flatt et al. 1998), in which subclasses, called mixins, are abstract in the sense that they
can be applied to different concrete superclasses (which is not possible with subclass-
ing in Java). In the graph example, the mechanism of class refinement gives us the
flexibility to refine either class Edge of feature BasicGraph or its refinement applied by
Weighted. Mixins are the static counterpart to the Decorator design pattern, discussed
in Sect. 4.2.4. They overcome the problems of inheritance with regard to step-wise

2 Jak’s keyword Super is similar to Java’s keyword super. While Super refers to the method that
has been overridden by a class refinement, super refers to the method that has been overridden by a
subclass. To avoid confusion, other feature-oriented languages use instead keywords such as original
(Apel et al. 2009).
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Fig. 6.7 Collaboration-based design of the graph library including HTML documentation
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Fig. 6.8 Composing containment hierarchies of the graph library (Apel 2007)

The AHEAD tool suite brings these separate tools together and selects different tools
for different kinds of files during feature composition, establishing a clear interface
to the build system. Composing Jak files will invoke a Jak-composition tool, whereas
composing XML files invokes an XML-composition tool, and so on, as illustrated
in Fig. 6.8.

Following the philosophy of AHEAD, the FeatureHouse tool suite has been devel-
oped that allows programmers to enhance given languages rapidly with support for
feature-oriented programming, for example, C#, C, JavaCC, Haskell, Alloy, and
UML (Apel et al. 2009). FeatureHouse is a framework for software composition
supported by a corresponding tool chain. It provides facilities for feature composi-
tion based on a language-independent model and tool chain for software artifacts,
and a plug-in mechanism for the integration of new artifact languages. A language
plug-in is essentially the language’s grammar plus some further information on how
different structural elements are composed. The benefit of this generality is that it is
now substantially easier to build new languages and tools for feature-based develop-
ment.

6.1.5 Discussion

Like all approaches in this chapter, feature-oriented programming is a language-based
and composition-based approach to product-line implementation (see language-
based versus tool-based and annotation versus composition in Sects. 3.1.2 and 3.1.3,
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Fig. 6.5 Composing the feature modules BasicGraph and Weighted

the changes that are needed to add the designated feature. That is, functions represent
program refinements that implement features. For example, ‘Weighted • X’ adds fea-
ture Weighted to program X, where ‘•’ is function composition. Similarly, ‘Colored •
X’ adds Colored to X. The design of a software product is a named feature expression,
for example:
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double area = myshape-> area;
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}
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double area = myshape-> area;

#endif
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#include <stdio.h>

#ifdef WORLD
char * msg = “Hello World”;
#endif

#ifdef BYE
char * msg = “Bye bye!\n”;
#endif

main() {
print(msg);

}

[ Kästner et al.: OOPSLA ‘11 ]
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TypeChef

AST with variability information

https://github.com/ckaestne/TypeChef#include <stdio.h>

#ifdef WORLD
char * msg = “Hello World”;
#endif

#ifdef BYE
char * msg = “Bye bye!\n”;
#endif

main() {
print(msg);

}

[ Kästner et al.: OOPSLA ‘11 ]
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TypeChef

AST with variability information

https://github.com/ckaestne/TypeChef#include <stdio.h>

#ifdef WORLD
char * msg = “Hello World”;
#endif

#ifdef BYE
char * msg = “Bye bye!\n”;
#endif

main() {
print(msg);

} Found 2 type errors:  
 - [WORLD & BYE] file greet.c:7:8 
        redefinition of msg 
 - [!WORLD & !BYE] file greet.c:11:8 
        msg undeclared

[ Kästner et al.: OOPSLA ‘11 ]
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Weather Smiley

[Nguyen et al., ICSE ’14]
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Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently 20°C
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Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently 20°C

Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently [:Temperature 20°C
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Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently 20°C

Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently [:Temperature 20°C

Temperature not 
displaying properly 

[Nguyen et al., ICSE ’14]
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Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently 20°C

Weather Smiley

Weather Updates:

Mostly cloudy today. It’s currently [:Temperature 20°C

Temperature not 
displaying properly 

Weather replaces  
[:Temperature:] with value 

while Smiley replaces :] with 
a smiley face [Nguyen et al., ICSE ’14]
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Figure 12: Variability in the program’s output
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Figure 13: Variability in computations

exactly one configuration option (column 1). That is, 94 % of the
output either is common among all configurations or is contributed
by plugins independently. The pie chart and Table 2 detail the contri-
bution exclusive to each plugin. It shows that plugins My Calendar
and WP Photo Album Plus contribute the most to the output; they
display a calendar widget and a photo slide show in the test web
page. Some plugins (29 out of 50 plugins) do not contribute to the
main page’s output at all.

A few fragments in the output are produced only if multiple
plugins are combined, with a maximum of 7 plugins (columns 2-
7). We found that most of those fragments are related to interac-
tions in declaring JavaScript libraries, since several different plugins
register the same JavaScript libraries with WordPress (as demon-
strated in Section 2). For example, plugin Cardoza (CAR) will print
a jQuery script if plugins WP Facebox (FAC) and WP Photo Al-
bum Plus (WPP) have not already done so. Therefore, the follow-
ing HTML fragment is displayed under variability context CAR^
¬FAC^¬WPP: <script ...jquery.js?ver=1.7.2’></script>.

5.1.2 Sharing and Interactions in Computations
After studying the output, we are interested in variability of inter-

nal computations. We counted each executed statement and analyzed
the corresponding variability context and aggregating results as for
the output. Figure 13 reports the sharing and interactions among
executed statements. As seen, 28 % of the executed statements are
shared among all configurations. 56 % of them are specific to one
plugin, as further detailed in the pie chart and Table 2. All plugins
are executed, with My Calendar contributing the most to the ex-
ecution. Interactions among multiple plugins account for 16% of
the executed statements and involve a maximum of 16 plugins. The
highest interaction involves plugins accessing the same WordPress
filters to register callback functions. Another common interaction of
plugins occurs in function get locale of WordPress:

L28: function get locale () { ...
L31: if ( isset ( $locale ) )
L32: return apply filters ( ‘ locale ’, $locale ) ;

Among others, plugins with IDs ADV, ALL, BET, DIS, and GOO2
attempt to retrieve the locale of the system via get locale, in which
the global variable $locale is set if it was not set earlier. Thus, when
plugin Google Analytics for WordPress (GOO2) calls get locale,
line 32 is executed when GOO2 is activated, and $locale is set (i.e.,

Figure 14: Variability in values (logarithmic scale)

one of the other plugins is activated). Thus, the variability context at
line 32 is GOO2^ (ADV_ALL_BET_DIS).

Note that if we executed WordPress in a brute-force fashion for all
250 configurations, we would execute statements in columns 0 and
1 each 250 and 249 times, respectively. In contrast, in a variability-
aware execution, those statements are executed only once, reducing
execution effort significantly.

We also measured how often a computation in a statement is split
into two or more subcomputations (due to context splitting). Out
of 255,233 executed statements, there are only 3,225 such cases. In
90 % of those cases, the context is split into only two subcontexts.
In the following worst case, the context is split into 48 subcontexts:

// WordPress�3.4.2/wp�includes/post�template.php
L166: $content = apply filters (‘ the content ’, $content);
L167: $content = str replace (‘]]>’, ‘]]&gt ;’, $content);

Here, the blog-post content (variable $content) is modified by
different plugins that registered to contribute to the WordPress
the content filter (line 166). Unless some values can be merged,
the number of values of $content doubles with every optional filter,
reaching 48 alternative unique values in our case. Subsequently, at
line 167, since str replace is a native function call, Varex splits the
current context into 48 subcontexts and executes the call multiple
times for concrete values of $content. Conceptually, the combina-
torial explosion can be avoided by providing a variability-aware
implementation of str replace that can handle multi-value strings.

5.1.3 Sharing and Interactions in Values
To see plugin interactions in variables’ values, we counted the

number of configuration options that the value of a variable depends
on. A variable can be a compound structure (object or array), whose
fields/keys can in turn be other compound structures. Thus, when
measuring plugin interactions, we take the nesting levels (or depths)
of values into account. Specifically, top-level variables are at depth
0; fields/keys of a compound structure at depth k are treated as
variables of depth k+1. Since a variable’s value may change during
the execution, we take snapshots of variables’ values throughout the
execution (every 10,000 executed statements and at the end, totaling
26 snapshots). We record the maximum number of configuration
options that each variable’s value depends on during the execution.

Figure 14 shows that at all different depths (with a maximum
depth of 11), most variables depend on zero or one configuration
option. Overall, 88.8 % of variables share the same value in all
configurations, and 9.8 % of them have values depending on only
one configuration option (column All). We found that high-degree
interactions (involving 10-16 plugins) are mostly associated with
the variables named wp filter id, which are incremented each time
a plugin registers a WordPress filter. Since all plugins are optional,
its value varies depending on many configuration options.

Sharing inside compound structures (depth > 0) is beneficial if
large objects differ only in individual fields. To study the impact of
the compact algorithm that enables this inner sharing (Section 3.2.1),
we additionally explored the size of the heap without this inner
sharing. For 152 out of 158 top-level objects, we would need to
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exactly one configuration option (column 1). That is, 94 % of the
output either is common among all configurations or is contributed
by plugins independently. The pie chart and Table 2 detail the contri-
bution exclusive to each plugin. It shows that plugins My Calendar
and WP Photo Album Plus contribute the most to the output; they
display a calendar widget and a photo slide show in the test web
page. Some plugins (29 out of 50 plugins) do not contribute to the
main page’s output at all.

A few fragments in the output are produced only if multiple
plugins are combined, with a maximum of 7 plugins (columns 2-
7). We found that most of those fragments are related to interac-
tions in declaring JavaScript libraries, since several different plugins
register the same JavaScript libraries with WordPress (as demon-
strated in Section 2). For example, plugin Cardoza (CAR) will print
a jQuery script if plugins WP Facebox (FAC) and WP Photo Al-
bum Plus (WPP) have not already done so. Therefore, the follow-
ing HTML fragment is displayed under variability context CAR^
¬FAC^¬WPP: <script ...jquery.js?ver=1.7.2’></script>.

5.1.2 Sharing and Interactions in Computations
After studying the output, we are interested in variability of inter-

nal computations. We counted each executed statement and analyzed
the corresponding variability context and aggregating results as for
the output. Figure 13 reports the sharing and interactions among
executed statements. As seen, 28 % of the executed statements are
shared among all configurations. 56 % of them are specific to one
plugin, as further detailed in the pie chart and Table 2. All plugins
are executed, with My Calendar contributing the most to the ex-
ecution. Interactions among multiple plugins account for 16% of
the executed statements and involve a maximum of 16 plugins. The
highest interaction involves plugins accessing the same WordPress
filters to register callback functions. Another common interaction of
plugins occurs in function get locale of WordPress:

L28: function get locale () { ...
L31: if ( isset ( $locale ) )
L32: return apply filters ( ‘ locale ’, $locale ) ;

Among others, plugins with IDs ADV, ALL, BET, DIS, and GOO2
attempt to retrieve the locale of the system via get locale, in which
the global variable $locale is set if it was not set earlier. Thus, when
plugin Google Analytics for WordPress (GOO2) calls get locale,
line 32 is executed when GOO2 is activated, and $locale is set (i.e.,
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one of the other plugins is activated). Thus, the variability context at
line 32 is GOO2^ (ADV_ALL_BET_DIS).

Note that if we executed WordPress in a brute-force fashion for all
250 configurations, we would execute statements in columns 0 and
1 each 250 and 249 times, respectively. In contrast, in a variability-
aware execution, those statements are executed only once, reducing
execution effort significantly.

We also measured how often a computation in a statement is split
into two or more subcomputations (due to context splitting). Out
of 255,233 executed statements, there are only 3,225 such cases. In
90 % of those cases, the context is split into only two subcontexts.
In the following worst case, the context is split into 48 subcontexts:

// WordPress�3.4.2/wp�includes/post�template.php
L166: $content = apply filters (‘ the content ’, $content);
L167: $content = str replace (‘]]>’, ‘]]&gt ;’, $content);

Here, the blog-post content (variable $content) is modified by
different plugins that registered to contribute to the WordPress
the content filter (line 166). Unless some values can be merged,
the number of values of $content doubles with every optional filter,
reaching 48 alternative unique values in our case. Subsequently, at
line 167, since str replace is a native function call, Varex splits the
current context into 48 subcontexts and executes the call multiple
times for concrete values of $content. Conceptually, the combina-
torial explosion can be avoided by providing a variability-aware
implementation of str replace that can handle multi-value strings.

5.1.3 Sharing and Interactions in Values
To see plugin interactions in variables’ values, we counted the

number of configuration options that the value of a variable depends
on. A variable can be a compound structure (object or array), whose
fields/keys can in turn be other compound structures. Thus, when
measuring plugin interactions, we take the nesting levels (or depths)
of values into account. Specifically, top-level variables are at depth
0; fields/keys of a compound structure at depth k are treated as
variables of depth k+1. Since a variable’s value may change during
the execution, we take snapshots of variables’ values throughout the
execution (every 10,000 executed statements and at the end, totaling
26 snapshots). We record the maximum number of configuration
options that each variable’s value depends on during the execution.

Figure 14 shows that at all different depths (with a maximum
depth of 11), most variables depend on zero or one configuration
option. Overall, 88.8 % of variables share the same value in all
configurations, and 9.8 % of them have values depending on only
one configuration option (column All). We found that high-degree
interactions (involving 10-16 plugins) are mostly associated with
the variables named wp filter id, which are incremented each time
a plugin registers a WordPress filter. Since all plugins are optional,
its value varies depending on many configuration options.

Sharing inside compound structures (depth > 0) is beneficial if
large objects differ only in individual fields. To study the impact of
the compact algorithm that enables this inner sharing (Section 3.2.1),
we additionally explored the size of the heap without this inner
sharing. For 152 out of 158 top-level objects, we would need to
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Example Thesis Topics
• Identify heuristics to detect unintended feature 

interactions 

• Features vs options: nature of configurability in the 
Linux kernel 

• Feature modeling of plugins from build 
dependencies 

• Using feature-oriented programming to guide 
cryptography API use
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Optional Exercise



(1) Familiarize Yourself With 
Clafer

• Look at clafer.org and familiarize yourself with the 
syntax and available tools 

• You do not need to understand the more advanced 
features (e.g., quality attributes, multi-objective 
optimization etc.)
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http://clafer.org


(2) Create a Feature Model!
• Select your favorite car model 

• Check out the configurator on the manufacturer’s website, and select at 
least 10 features that describe the car 

• Create a feature model in clafer using those features 

• Your model should make use of the following 

• optional and mandatory features 

• or and xor groups 

• You can write your model directly in the online Clafer configurator (http://
t3-necsis.cs.uwaterloo.ca:8093/) and then click the compile button to 
make sure the syntax is correct
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http://t3-necsis.cs.uwaterloo.ca:8093/


(3) Generate Instances
• Using the same clafer online configurator, generate 

all possible instances of your model 

• Report how many valid products (i.e., instances) 
does your car have
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Make sure you increase 
this number to make sure 
you have covered all valid 

instances



(4) Create Cross-tree 
Constraints

• Add at least one cross-tree constraint to your 
model 

• It can be based on real constraints from the car 
manufacturer or hypothetical constraints you come 
up with 

• Report how many valid products (i.e., instances) 
does your car have now

73



Submit Your Model

• If you want to submit your model, email 
weiel@st.informatik.tu-darmstadt.de your 
car_<yourname>.cfr along with the number of 
instances before and after your added constraints 

• Make sure to mark the extra cross-tree constraints 
you added (using code comments)
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Extras: Using the Online 
Configurator

• You can use the online configurator (feature and 
quality matrix) to explore the valid products in your 
product line
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