Software Engineering: Design & Construction

TECHNISCHE
Department of Computer Science UNIVERSITAT
Software Technology Group DARMSTADT
Practice Exam May 22, 2015

First Name

Last Name

Matriculation Number

Course of Study

Department

Signature

Permitted Aids

* Use a pen with document-proof ink (No green or red color)

Everything except electronic devices

Announcements

* Make sure that your copy of the exam is complete (9 pages).

Fill out all fields on the front page.

Do not use abbreviations for your course of study or your department.

Put your name and your matriculation number on all pages of this exam.

The time for solving this exam is 30 minutes.

All questions of the exam must be answered in English.

You are not allowed to remove the stapling.

All tasks can be processed independently and in any order.

You can use the backsides of the pages if you need more space for your solution.
Make sure that you have read and understood a task before you start answering it.
It is not allowed to use your own papetr.

Sign your exam to confirm your details and acknowledge the above announcements.

Topic 1 2 Total
Points
Max. 12 11 30

Name: Matriculation Number: L i1 L L i1
Topic 1: Introduction 12P
a) Software Design 1P

What is the difference between hardware engineering and software engineering with respect to measuring the quality?

b) Structured Programming

2P

Name two differences and two similarities between functional programming and traditional object oriented (< Java8)
programming languages.

¢) Variance

5P

Take a look at the following Scala code example:

class MyClass extends AnyRef
class MySubclass extends MyClass
//As a reminder:

//Boolean <: AnyVal <: Any
//everything <: Any

//Nothing <: everything

//Null

val
val
val
val
val
val

val

f1:
f2:
£3:
f4:
£5:
£6:

f:

<: every AnyRef

(Any) => Any = 777

(Any) => Boolean = 7?77?77
(MyClass) => Any = 77?7
(MySubclass) => Boolean = ?7?
(Any) => Nothing = 77?7
(MyClass) => Null = 77?

(MyClass) => Boolean = // f1 ?,

Continued on the next page.

f2 ?,

LI

£f6

Name: Matriculation Number: L i1 L L i1

The last line is just a short hand for assigning each variable from f; ... fg to f.
Now state for each f; if this assignment is valid. (3P)

Discuss for one case why it succeeds or why it is rejected by the compiler.
Use the terminology covariance and contravariance. (2P)

Name: Matriculation Number: L i1 111

d) Fragile Base Classes 4P

Discuss two issues of the following design related to the fragile base class problem and give concrete examples for each
of them.

Listing 1: Provided Library

/** A mutable bank account that ensures that the balance is always positive (>= 0) */
class BankAccount {
private[this] var balance: Long = OL

/** Deposits a given amount of money into the account.
@param amount The deposited amount of money. If a negative amount is given,
an AccountException is thrown.
:'.‘/
def deposit(amount: Long): Unit = {
if (amount < 0) throw new AccountException("amount has to be positive")
balance += amount

/%% Withdraws the specified amount of money from the account.
@param amount The amount to be withdrawn.
If the amount exceeds the balance, an AccountException is thrown.
:%/
def withdraw(amount: Long): Unit = {
if (balance < amount) throw new AccountException("Not enough money")
balance -= amount

/** Transfers the given amount to another account. */
def transfer(that: BankAccount, amount: Long): Unit = {
this.withdraw(amount)
that.deposit (amount)

Listing 2: Example Usage
class LogBankAccount extends BankAccount {
private var events: List[Long] = Nil
def log(amount: Long): Unit = {
events = amount :: events

override def withdraw(amount: Long): Unit = {
log (amount)
super .withdraw(amount)

Name: Matriculation Number: L i1 L L i1

Name: Matriculation Number: L i1 L L i1
Topic 2: S.O.L.1.D. 11P
a) Origins of the Interface Segregation Principle (ISP) 4p

Folklore says that the ISP was invented by Robert C. Martin while working for Xerox on a flexible printer system that
would not only print but also perform a variety of printer-related tasks like stapling and faxing. There was one main Job
class that was used by most other tasks. During the development of the system, making a modification to the Job class
therefore affected many other classes and a compilation cycle would take a long time. This made it very time-consuming
to modify the system. Since the big Job class had many methods specific to a variety of different clients, the solution was
to introduce multiple smaller interfaces for each client. A client would then only operate on a specific, small interface to
the Job class. Modifications to the Job class would then affect a smaller number of interfaces and therefore less classes
had to be recompiled.

From this description, it sounds like there are other S.0.L.I1.D. principles that could have been violated by Xerox’s design.
Which ones, why, and how would you redesign the system to adhere to them?

Name: Matriculation Number: L i1 L L i1

b) Design Review 7P

In Figure 1, you find an excerpt from a basic dungeon crawler game. Assume that there are no checked exceptions, but
that the given exceptions are complete, i.e., a method will not throw any exception that is not given in its signature. For
each S.0.L.I.D. principle, say how the design violates or honors it (as much as you can tell from the diagram). Suggest
improvements and draw a UML diagram that incorporates your improvements.

DungeonGame Position

start() x: Int

1 y: Int
z: Int
add(p : Position)
to2D(): Position2D
substract(p: Position)
equalWithDelta(p: Position, delta: Double)
magnitude(): Double
negate(): Position
lessThan(p: Position): Boolean

*

Character
«trait»

health: Int

draw(c: Canvas)
move(p: Position)
attack(c: Character)

Player Monster PeacefulMob
draw(c: Canvas) draw(c: Canvas) draw(c: Canvas)
move(p: Position) move(p: Position) move(p: Position)
attack(c: Character) attack(c: Character) attack(c: Character) {exceptions=InvalidOperationException}

Figure 1: Class diagram for the document hierarchy

Name: Matriculation Number: L i1 L L i1
Topic 3: Scala 7P
a) Mixin Composition and Linearization 4p

Given the following Scala code example:

abstract class Password{

private[this] var

}

trait Hash extends
abstract override

}

trait Salt extends
val salt = "xyz"
abstract override

}

password = "password"
def set(pwd: String) = { password = pwd }

Password{
def set(pwd:

Password{

def set(pwd:

String)

String)

super.set (pwd.hashCode. toString)

super.set(salt + pwd)

class HashedPassword extends Password with Hash

The previous code example contains various Scala traits which were composed in the following code snippet.

class DoubleHashWithSalt extends HashedPassword with Salt with Hash

Now state

1. the linearization

2. the order of the super calls for the method set of the class DoubleHashWithSalt.

3. Does DoubleHashWithSalt actually hash the password twice?

Name: Matriculation Number: L i1 L L i1

b) Scala vs. Java 1P

What is the difference between super calls in Scala compared to the super calls in Java?

¢) OCP and Pattern Matching 2P

Given the following pattern matching example. Does this implementation support the Open-Closed Principle? Justify
your answer.

trait Student
class MasterOfArts extends Student
class MasterOfScience extends Student

def getAbbreviation(s: Student) = s match {
case (_: MasterOfArts) => "M.A."
case (_: MasterOfScience) => "M.Sc."

