
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Programming Languages and Design Principles

Summer Term 2018

Making Code Look
Like Design

 2

“Designing” with Pseudo-Assembler

 3

What does the following program do?

i = 1
TEST: if i < 4

then goto BODY
else goto END

BODY: print i
i = i + 1
goto TEST

END:

“Designing” with Pseudo-Assembler

 4

What does the following program do?

i = 1
LOOP: print i

i = i + 1
if i < 4 goto LOOP

END:

Style can only be
recommended, not

enforced!

 5

Designing with Structured Programming Languages

 6

What does the following program do?

i = 1
while (i < 4) {

print(i)
i = i + 1

}

Style
 gets

 en
for

ce
d!

Better languages, More challenging tasks…

 7

A simple image browser with structured programming

Code for Image Browser Structured into Procedures

 8

Try to identify which method calls which method!

main () {
draw_label(“Art Browser”)
 m = radio_menu(
 {“Whale”, “Eagle”,
 “Dogfish”})
 q = button_menu({“Quit”})
 while (!check_buttons(q)) {
 n = check_buttons(m)
 draw_image(n)
 }
}

set_x (x) {
 current_x = x
}

draw_circle (x, y, r) {
 %%primitive_oval(x, y, 1, r)
}

set_y (y) {
 current_y = y
}

radio_menu(labels) {
 i = 0
 while (i < labels.size) {
 radio_button(i)
 draw_label(labels[i])
 set_y(get_y()
 + RADIO_BUTTON_H)
 i++
 }
}

radio_button (n) {
 draw_circle(get_x(),
 get_y(), 3)
}

get_x () {
 return current_x
}

get_y () {
 return current_y
}

draw_image (img) {
 w = img.width
 h = img.height
 do (r = 0; r < h; r++)
 do (c = 0; c < w; c++)
 WINDOW[r][c] = img[r][c]
}

button_menu(labels) {
 i = 0
 while (i < labels.size) {
 draw_label(labels[i])
 set_y(get_y()
 + BUTTON_H)
 i++
 }
}

draw_label (string) {
 w = calculate_width(string)
 print(string, WINDOW_PORT)
 set_x(get_x() + w)
}

Structured Programming
with Style

gui_radio_button(n)

gui_button_menu(labels)

gui_radio_menu(labels)

graphic_draw_image (img)

graphic_draw_circle (x, y, r)

graphic_draw_label (string)

state_set_y (y)

state_get_y ()

state_set_x (x)

state_get_x ()

main()

Abstraction mechanisms
enable us to code and
design simultaneously!

 10

"Write what you mean."

Let’s “develop” application families with sophisticated GUIs with
uniform look and feel with structured/modular programming…

 11

Designing with Object-Oriented Programming Languages

• classes

• inheritance

• subtype polymorphism

• virtual methods

 12

Object-oriented programming languages introduce new
abstraction mechanisms:

(Still)
 Dom

ina
tin

g

Prog
ram

ming
 Para

digm

The roots of object-oriented programming languages are in the
sixties.

 13

Allan Kay,
Smalltalk 70 - 80

Dahl and Nygaard,
Simula 64, 68

Programming Languages are not a Panacea

 14

–Einstein

"The significant problems we face cannot be solved
at the same level of thinking we were at when we
created them."

 15

–Jack Reeves, To Code is to Design, C++ Report 1992

 […] improvements in programming techniques
and programming languages in particular are
overwhelmingly more important than anything else
in the software business […]

[…] programmers are interested in design […]
when more expressive programming languages
become available, software developers will adopt
them.

 16

Designing with Functional, Object-Oriented Programming
Languages

 17

class Person(id : Int)

val in : java.util.ObjectIntputStream = …
val count = in.read() // the number of stored objects
scala.Array.fill(count){ in.readObject() }

=> Array[Person] = Array(Person(0), …, Person(14))

Result:

Code:

Read the next n objects from an ObjectInputStream.

Design Challenge:  
Get Rid of Global State

 18

import java.util.HashMap;

public class GlobalState {
 public static HashMap<Object,Object> theCache; // = ...
}

class Main {
 public static void init() {
 synchronized(GlobalState.class) {
 GlobalState.theCache.put("year",new Integer(2017));
 printIt()
 }
 }

 public static void printIt() {
 System.out.println(GlobalState.stateToString());
 }

 public static void main(String[] args) {
 GlobalState.theCache = new HashMap<>();

 init();
 printIt();
 }
}

Typical - screwed up - design!

Design Challenge:  
Get Rid of Global State

 19

import java.util.HashMap;

public class TheState {
 public HashMap<Object,Object> theCache; // = ...
}

class Main {
 public static void init(TheState theState) {
 synchronized(theState) {
 theState.theCache.put("year",new Integer(2017));
 printIt(theState)
 }
 }

 public static void printIt(TheState theState) {
 System.out.println(theState);
 }

 public static void main(String[] args) {
 TheState theState = new TheState();
 theState.theCache = new HashMap<>();

 init(theState);
 printIt(theState);
 }
}

No global State,  

but we now have to pass around the state.

Scala - Implicit Parameters

• If a method with implicit parameters misses arguments
for them, such arguments will be automatically provided.

• Eligible are all identifiers x that can be accessed at the
point of the method call without a prefix and that denote
an implicit parameter.

• [… more details will follow later]

 20

Design Challenge:  
Get Rid of Global State

 21

import java.util.HashMap;

class State {
 var theCache: HashMap[Object, Object] = new HashMap()
}

class StateMain {

 def init(implicit s: State): Unit = {
 s.synchronized {
 s.theCache.put("year", new Integer(2017));
 }
 }

 def printIt(implicit s: State): Unit = {
 System.out.println(s);
 }

 implicit val s : State = new State();
 s.theCache = new HashMap();

 init
 printIt
}

No global State,  

the state is implicitly passed around.

Traits in Scala
trait Table[A, B] {
 def defaultValue: B
 def get(key: A): Option[B]
 def set(key: A, value: B) : Unit
 def apply(key: A) : B = get(key) match {
 case Some(value) ⇒ value; case None ⇒ defaultValue
 }
}

 22

mixin
composition

class ListTable[A, B](val defaultValue: B) extends Table[A, B] {
 private var elems: List[(A, B)] = Nil
 def get(key: A) : Option[B] = elems collectFirst { case (`key`,value) => value }
 def set(key: A, value: B) : Unit = elems = (key, value) :: elems
}

trait SynchronizedTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): Option[B] =
 this.synchronized { super.get(key) }
 abstract override def set(key: A, value: B) : Unit =  
 this.synchronized { super.set(key, value) }
}
object MyTable extends ListTable[String, Int](0) with SynchronizedTable[String, Int]

Traits in Scala (Continued)
trait LoggingTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): B = {
 println("Get Called"); super.get(key)
 }
 abstract override def set(key: A, value: B) = {
 println("Set Called"); super.set(key, value)
 }
}

class MyTable
 extends ListTable[String, Int](0)
 with LoggingTable
 with SynchronizedTable

 23

mixin
composition

(Order matters!)

Mixin Composition in Scala
• In Scala, if you mixin multiple traits into a class the

inheritance relationship on base classes forms a directed
acyclic graph.

• A linearization of that graph is performed. 
The Linearization (Lin) of a class C (class C extends
C1 with ... with Cn) is defined as: 
Lin(C) = C, Lin(Cn) ⪼ ... ⪼ Lin(C1) 
where ⪼ concatenates the elements of the left operand with
the right operand, but elements of the right operand replace
those of the left operand. 
{a,A} ⪼ B = a,(A ⪼ B) if a ∉ B 
 = (A ⪼ B) if a ∈ B

 24

Mixin Composition in Scala

• The linearization of class `Iter` is:

• { Iter, Lin(RichIterator) ⪼ Lin(StringIterator) }

• { Iter, Lin(RichIterator) ⪼ { StringIterator, Lin(AbsIterator) } }

• { Iter, Lin(RichIterator) ⪼ { StringIterator, AbsIterator, AnyRef } }

• { Iter, { RichIterator, AbsIterator, AnyRef } ⪼  
 { StringIterator, AbsIterator, AnyRef } }

• { Iter, RichIterator, StringIterator, AbsIterator, AnyRef, Any }

 25

abstract class AbsIterator extends AnyRef { ... }
trait RichIterator extends AbsIterator { ... }
class StringIterator extends AbsIterator { ... }
class Iter extends StringIterator with RichIterator { ... }

The order is relevant!

{a,A} ⪼ B = a,(A ⪼ B) if a ∉ B 
 = (A ⪼ B) if a ∈ B

2nd Rule

Traits in Scala (Continued)
trait LoggingTable[A, B] extends Table[A, B] {
 abstract override def get(key: A): B = {
 println("Get Called"); super.get(key)
 }
 abstract override def set(key: A, value: B) = {
 println("Set Called"); super.set(key, value)
 }
}

class MyTable
 extends ListTable[String, Int](0)
 with LoggingTable
 with SynchronizedTable

 26

mixin
composition

(Order matters!)

Abstract Types in Scala
1. class Food

3. class Grass extends Food

5. abstract class Animal {
6. type SuitableFood <: Food
7. def eat(food: SuitableFood) : Unit
8. }

10. abstract class Mammal extends Animal

12. class Cow extends Mammal {
13. type SuitableFood = Grass
14. override def eat(food: Grass) : Unit = {}
15. }

 27

Abstract Type

Path-dependent types in Scala
class DogFood extends Food

class Dog extends Animal {
 type SuitableFood = DogFood
 override def eat(food: DogFood) : Unit = {}
}

 28

scala> val bessy = new Cow  
bessy: Cow = Cow@10cd6d

scala> val lassie = new Dog  
lassie: Dog = Dog@d11fa6

scala> lassie eat (new bessy.SuitableFood)  
<console>:13: error: type mismatch;  
found : Grass  
required: DogFood  
lassie eat (new bessy.SuitableFood)

Path-dependent types in Scala
class Food

abstract class Animal {
 type SuitableFood <: Food
 def createFood : SuitableFood
 def eat(food: this.SuitableFood) : Unit
}

class Cow extends Animal {
 class Grass extends Food
 type SuitableFood = Grass
 def createFood = new Grass
 override def eat(food: this.SuitableFood) : Unit = {}  
}  

val cow1 = new Cow
val cow2 = new Cow
cow1.eat(cow1.createFood)
cow1.eat(cow2.createFood)
cmd47.sc:1: type mismatch;  
 found : $sess.cmd45.cow2.Grass  
 required: $sess.cmd44.cow1.SuitableFood  
 (which expands to) $sess.cmd44.cow1.Grass

 29

This cow only wants to eat food
especially created for it!

Avoid that objects are used in the wrong context.

• An object which stores the result of an exam should be
bound to the respective exam and should not be
compared with some other object storing the results of
some other exam.

• The value encapsulating the result of the analysis of a
method should only be used w.r.t. the specific data-flow
analysis that was used to create it.

 30

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax

 31

Creating an abstraction to express that we want to repeat something n
times.

def repeat[T: scala.reflect.ClassTag](times: Int)(f: ⇒ T): Array[T] = {  

 val array = new Array[T](times)
 var i = 0
 while (i < times) { array(i) = f; i += 1 }
 array
}

Can we further improve the comprehensibility:
Arrays.fill(n,{ () => in.readObject() })

Now, we can express that we want to read a value x times and create an
Array which stores the values using our new control-abstraction.

repeat(n){ in.readObject() }

Designing with Functional, Object-Oriented Programming
Languages with a Flexible Syntax vs. Explicit Language Features

 32

val tempFile = File.createTempFile("demo", "tmp");
process(new java.io.FileOutputStream(tempFile)) { fout ⇒ 
 fout.write(42);
}

Using Scala’s language features enables us to define a new control
structure that resembles Java’s try-with-resources statement.

def process[C <: Closeable, T](closable: C)(r: C ⇒ T): T = {
 try { r(closable) }
 finally { if (closable != null) closable.close() }
}

File tempFile = File.createTempFile("demo", "tmp");
try (FileOutputStream fout = new FileOutputStream(tempFile)) {
fout.write(42);

}

Java’s native try-with-resources statement

Design Challenge

Implementing 
trait Col[X]{map[T](f:(X)=>T){…}}

Try to implement the classical map function, which performs
a mapping of the values of a collection using a given
function, only once for all collection classes.
The function should be defined by the “top-level” class
(e.g., Collection).
The type of the collection with the mapped values should
correspond to the runtime type of the source collection. If
this is not possible, a reasonable other collection should be
created. (The function should not fail!)

 33

This is only a first approximation of the method’s signature.

Implementing Col[X]{map[T](f:(X)=>T){…}}

 34

Initial Draft

trait Col[X] { def map[T](f : (X) => T) : Col[T] = {…} }
class List[X] extends Col[X] { /*does not override map!*/ …}
class BitSet extends Col[Int] {/*does not override map!*/ …} 

val l = List(1,2,3)
l.map(i => i +1) // should result in List[Int](2,3,4)

val b = BitSet(1,2,3)
b.map(i => i +1) // should result in BitSet[Int](2,3,4)

b.map(i => “I:"+i) // should result in ???("I:1","I:2","I:3")

Will b
e s

olv
ed

 la
ter

!

This is only a first approximation of the method’s signature.

Programming Languages with
notable Features:
• RUST avoids buffer errors statically (based on ownership)  

Graydon Hoare, 2009

• Checked C avoids buffer errors statically and dynamically
(introduces new checked pointer types) 
David TardiF, June 2016 (v 0.5)

• Perl (3) implements a taint mode to avoid injections
dynamically  
Larry Wall, 1987

• Java made first steps to avoid cryptographic issues with the
“Cryptography Architecture”

• GO, Erlang,… have advanced support for concurrency
 35

We need good style to cope with complexity!

 36

General Design Principles

• Keep it short and simple
• Don't repeat yourself (also just called "DRY-Principle")
• High Cohesion
• Low Coupling
• No cyclic dependencies
• Make it testable
• Open-closed Design Principle
• Make it explicit/use Code
• Keep related things together
• Keep simple things simple
• Common-reuse/Common-closure/Reuse-release principles

 37

The following principles apply at various abstraction levels!

Object-Oriented Design Principles

• Liskov Substitution Principle

• Responsibility Driven Design

• …

 38

Design Constraints

• Conway's Law 
A system's design is constrained by the organization's
communication structure.

 39

