
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Liskov Substitution Principle

Summer Term 2018

–Barbara Liskov, 1988 (ACM Turing Award Receiver)

Liskov Substitution Principle

Subtypes must be behaviorally substitutable for their base types.

 2

External resource: The Liskov Substitution Principle: https://web.archive.org/web/20151128004108/
http://www.objectmentor.com/resources/articles/lsp.pdf

We identified class inheritance and subtype
polymorphism as primary mechanisms for

supporting the open-closed principle (OCP)
in object-oriented designs.

 3

The Liskov Substitution Principle
• … gives us a way to characterize good inheritance

hierarchies.

• … increases our awareness about traps that will cause us
to create hierarchies that do not conform to the open-
closed principle.

 4

The Essence of the Liskov Substitution Principle

+someMethod() : void

SomeClass

+someMethod() : void

SomeSubclass1

+someMethod() : void

SomeSubclass2

Substitutability  
in object-oriented programs

void clientMethod(SomeClass sc)
{
 …
 sc.someMethod();
 …
}

In object-oriented programs, subclasses are substitutable for superclasses in client code: In
clientMethod, sc may be an instance of SomeClass or any of its subclasses.
Hence, if clientMethod works with instances of SomeClass, it does so with instances of any subclass
of SomeClass. They provide all methods of SomeClass and eventually more.

Liskov Substitution Principle by
Example
• Assume, we have implemented a class Rectangle in our

system.  

class Rectangle {

 public void setWidth(int width) { this.width = width; }

 public void setHeight(int height) { this.height = height;}

 public void area() { return height * width;}

}

• Let's now assume that we want to implement a class Square
and want to maximize reuse.

 6

Since a square is a rectangle (mathematically speaking), we decided to implement Square as a subclass
of Rectangle.

We override setWidth and setHeight and can reuse the implementation of area.

Liskov Substitution Principle by Example
• Implementing Square as a subclass of Rectangle

class Square extends Rectangle {

 public void setWidth(int width) {
 super.setWidth(width);
 super.setHeight(width);
 }

 public void setHeight(int height) {
 super.setWidth(height);
 super.setHeight(height);
 }

}

• We can pass Square wherever Rectangle is expected.

 7

What do you think of this design?

+setWidth(int width)
+setHeight(int height)
+area():int

Rectangle

+setWidth(int width)
+setHeight(int height)

Square

This
 m

od
el

is s
elf

-co
ns

iste
nt!

With this overriding of setHeight and setWidth – to set both dimensions to the same value – instances of
Square remain mathematically valid squares. A square does comply to the mathematical properties of a
rectangle: A square has four edges and only right angles and is therefore a rectangle.

We can indeed pass Square wherever Rectangle is expected, as far as the Java type system is
concerned.
But, by doing so we may break assumptions that clients of Rectangle make about the
“behavior” of a Rectangle.

+setWidth(int width)
+setHeight(int height)
+area():int

Rectangle

+setWidth(int width)
+setHeight(int height)

Square

Liskov Substitution Principle
by Example

• A client that works with
instances of Rectangle, but
breaks when instances of
Square are passed to it 

void clientMethod(Rectangle rec)
{
 rec.setWidth(5);
 rec.setHeight(4);
 assert(rec.area() == 20);
}

☔

The clientMethod method makes an assumption that is true for Rectangle: setting the width respectively
height has no effect on the other attribute. This assumption does not hold for Square.

The Rectangle/Square hierarchy violates the Liskov Substitution Principle (LSP)! Square is behaviorally not
a correct substitution for Rectangle.

A Square does not comply with the behavior of a rectangle: Changing the height/width of a square
behaves differently from changing the height/width of a rectangle. Actually, it doesn't make sense to
distinguish between the width and the height of a square.

Spot the LSP Violation in the following case:
 class Person(val name : String) {
 override def equals(a : Any) : Boolean = {
 a match {case p : Person => p.name == this.name }
 } }

Hint: consider the contract defined by java.lang.Object related to equals.

Software  
It Is All About Behavior

 9

Programmers do not define entities
that are something, but entities that
behave somehow.

Validity is not Intrinsic!

 10

Inspecting the Square/Rectangle
hierarchy in isolation did not show
any problems. In fact it even seemed
like a self-consistent design.
We had to inspect the clients to
identify problems.

• A model viewed in isolation can not be meaningfully validated!  
The validity of a model depends on the clients that use it.

• Hence, the validity of a model must be judged against the possible uses of the model.  
We need to anticipate the assumptions that clients will make about our classes.

Liskov Substitution Principle by Example

 11

Rectangles and Square - LSP Compliant Solution

+setWidth(int width)
+setHeight(int height)
+area(): int

Rectangle

+setSize(int size)
+area(): int

Square

+area():int

«interface»
Shape

To get a LSP compliant solution, we make Rectangle and Square siblings.
We introduce the interface Shape to bundle common methods.

• Clients of Shape cannot make any assumptions about the behavior of setter methods.
• When clients want to change properties of the shapes, they have to work with the concrete classes.
• When clients work with the concrete classes, they can make true assumptions about the computation

of the area.

So what does the Liskov
Substitution Principle add to the

common object-oriented
subtyping rules?

 12

The Liskov Substitution Principle additionally
requires behavioral substitutability

(Behavioral substitutability is generally not checked by compilers/static analysis tools!)

+someMethod() : void

SomeClass

+someMethod() : void

SomeSubclass1

+someMethod() : void

SomeSubclass2

Behavioral Substitutability
• It’s not enough that instances

of SomeSubclass1 and
SomeSubclass2 provide all
methods declared in
SomeClass.  
These methods should also
behave like their heirs!

• A client method should not be
able to distinguish the
behavior of objects of
SomeSubclass1 and
SomeSubclass2 from that of
objects of SomeClass.

Behavioral Subtyping

 14

S is a behavioral subtype of T, if
objects of type T in a program P
may be replaced by objects of type
S without altering any of the
properties of P.

The Relation between  
LSP and OCP
• Consider a function f parameterized over type T

• S is a derivate of T.

• when passed to f in the guise of objects of type T,
objects of type S cause f to misbehave.

• S violates the Liskov Substitution Principle.

 15
f is fragile in the presence of S

I.e., f is not closed against derivations of T anymore.

When a developer encounters such code in a real project, the developer of f will most probably put a
test to ensure that instances of S are treated properly.

Can you think of straightforward
examples of violations of the

Liskov Substitution Principle?

 16

Straightforward examples of violations of the Liskov Substitution Principle.
• Derivates that document that certain methods inherited from the superclass should not be called by

clients. 
(Such situations arise due to insufficient means to specify access rights.)

• Derivates that throw additional (unchecked) exceptions.
• Derivates that behave differently in special cases (e.g., return “null” values)…

Properties extends Hashtable
LSP Violation in the JDK

 17

Because Properties inherits from Hashtable, the
put and putAll methods can be applied to a
Properties object. Their use is strongly discouraged
as they allow the caller to insert entries whose keys or
values are not Strings. The setProperty method
should be used instead. If the store or save method is
called on a "compromised" Properties object that
contains a non-String key or value, the call will fail.

The “correct” solution would have been to use Object composition instead of inheritance.

What mechanisms can
we use to support LSP?

 18

Recall:
A model viewed in isolation cannot be
meaningfully validated with respect to
LSP.
Validity must be judged from the
perspective of possible usages of the
model.

Hence, we need to anticipate assumptions that clients make about our models – which is de facto
impossible. Most of the times we will only be able to view our model in isolation; we do not know how it
will be used and how it will be extended by means of inheritance.

Trying to anticipate them all might yield needles complexity.

Design by Contract

• Solution to the validation problem: A technique for
explicitly stating what may be assumed.

• Two main aspects of design-by-contract:
• We can specify contracts using Pre-, Post-Conditions

and Invariants.  
They must be respected by subclasses and clients can
rely on them.

• Contract enforcement (behavioral subtyping).  
Tools to check the implementation of subclasses
against contracts of superclasses.

 19

The programmer of a class defines a contract that abstractly specifies the behavior on which clients can
rely.

Pre- and Post-conditions
• Declared for every method of the class (w.r.t. the potentially affected state).
• Preconditions must be true for the method to execute.
• Post-conditions must be true after the execution of the method.

Invariants
• Properties that are always true for instances of the class.
• May be broken temporarily during a method execution, but otherwise hold.

Contract for Rectangle.setWidth(int)

public class Rectangle implements Shape {
 private int width;
 private int height;

 public void setWidth(int w) {
 this.width = w;
 }
}

 20

Design by Contract

Precondition for setWidth(int w): 	 	 w > 0
Postcondition for setWidth(int w):	 width = w; height unchanged

Contract Enforcement

• This is called behavioral subtyping.

• It ensures that clients won’t break when instances of
subclasses are used in the guise of instances of their
heirs!

 21

Subclasses must conform to the contract of their
base class!

What would the subtyping rules look like?

What does it mean for a subclass to conform to the contract of the base class?

Behavioral Subtyping

• Rule for Preconditions:

• Preconditions of a class imply preconditions of its
subclasses.

• Preconditions may be replaced by (equal or) weaker ones.

• Rule for Postconditions:

• Postconditions of a class are implied by those of its
subclasses.

• Postconditions may be replaced by equal or stronger
ones.

 22

Rationale for the rule for preconditions:
• A derived class must not impose more obligations on clients.
• Conditions that clients obey to before executing a method on an object of the base class should suffice

to call the same method on instances of subclasses.

Rationale for the rule for postconditions:
• Properties assumed by clients after executing a method on an object of the base class still hold when

the same method is executed on instances of subclasses.
• The guarantees that a method gives to clients can only become stronger.

"Standard" Subtyping

• f: T1 → T2  
// f is function taking values of type T1 and returning values of type T2

• f’: T1’ → T2’

• f’ <: f ⇔ T1 <: T1’ and T2’ <: T2 (f' is a subtype of f)

 23

“Standard” subtyping relies on contra-variance of the argument types and
covariance of the return type for enforcing “pre- and post-conditions on
signatures”.

In Java, a method f that has the same name, the same return type and the same number of arguments as
a method f defined in a superclass doesn't override the superclass's method if one or more argument
types are contra-variant.

Scala's Type Hierarchy

 24

scala.Any

scala.AnyRef
scala.AnyVal

scala.ScalaObject"Java classes"

scala.Unit scala.Int

scala.Long

scala....

"ValueClasses"

Value classes are supported since Scala 2.10.

Scala's Type Hierarchy

 25

scala.Any

scala.AnyRef
scala.AnyVal

scala.ScalaObject"Java classes"

scala.Unit scala.Int

scala.Long

scala....

"ValueClasses"

scala.Null

scala.Nothing

… …

… …

When compared to languages such as Java, Scala also has a well-defined least Type, i.e., a type that is
the subtype of all other types.

"Standard" Subtyping in Scala
val f: (Seq[_]) ⇒ Boolean = (s) ⇒ { s eq null }

val af1: (Object) ⇒ Boolean // = f ?

val af2: (List[_]) ⇒ Boolean // = f ?

val af3: (Seq[_]) ⇒ Any // = f ?

val af4: (Seq[_]) ⇒ Nothing // = f ?

 26

Is it possible to assign a value of type f to the variable: af1, af2, af3 or af4?

(Seq[_]) => Boolean is the type of the function that takes a Sequence of some type and returns a
Boolean value. It is the same as the Function1[Seq[_],Boolean].

Another example: val f : (List[Any]) => Set[Any] = (c : Traversable[Any]) => HashSet.empty[Any]

The answers are:
• 1: no
• 2: yes
• 3: yes
• 4: no (A client that can cope with "Nothing" will certainly not be able to cope with Booleans.)

trait Store[+A] {
def +[B >: A](b: B): Store[B]
def contains(a: Any): Boolean

}
object EmptyStore extends Store[Nothing] {

def +[B](b: B): Store[B] = new LinkedListStore(b, this)
def contains(b: Any) = false

}
class LinkedListStore[+A]( 

val v: A, val rest: Store[A]
) extends Store[A] {

def +[B >: A](b: B): LinkedListStore[B] =  
new LinkedListStore(b, this)

def contains(a: Any): Boolean =  
this.v == a || (rest contains a)

}
object Main extends App {

val a: Store[Int] = EmptyStore + 1 + 2
val b: Store[Any] = a
println(b contains 1); println(b contains 3)

}
 27

Using Least Types

Scala has “definition-site variance”; Java has “use-site variance”.

(Here, we state that Stores are covariant; the type A has to be used only in covariant positions. (by
means of +A).)

In this case we can use a single instance of an EmptyStore and assign it to every type of store.

Behavioral and Standard Subtyping in OO

• LSP imposes some standard requirements on signatures that have
been adopted in OO languages:
• contra-variance/covariance of method argument/return types.

• no new (checked) exceptions should be thrown by methods of the
subtype, except for those exceptions that are subtypes of
exceptions thrown by the methods of the super-type.

• In addition, there are a number of conditions that behavioral subtypes
must meet concerning values (rather than types) of input and output.

• Behavioral subtyping is undecidable in general.
 28

Behavioral subtyping is a stronger notion than
subtyping of functions defined in type theory.

If q is the property "method foo always terminates“ and holds for objects of type T, it's generally
impossible for a program (compiler) to verify that it holds true for some subtype S.

LSP is useful, however, in reasoning about the design of class hierarchies.

Languages and Tools for Design-by-
Contract
• Contracts as comments in code or in documentation.

• Unit-tests as contracts.

• Formalisms and tools for specifying contracts in a
declarative way and enforcing them.

 29

• Contracts as comments are easy and always possible, but not machine checkable.
• Unit test are machine checkable, but not declarative, possibly cumbersome and need to maintained/

updated whenever a new subclass is added.
• The Eifel (http://eiffel.com) language has built-in support for design-by-contracts (the term was coined

by B. Meyer).
• The Java Modeling Language (JML)](http://www.eecs.ucf.edu/~leavens/JML/index.shtml) uses

annotations to specify pre-/post-conditions for Java.
• Recent languages, e.g., IBMs X10, integrate DbC into the type system by means of dependent types

(values in type expressions).

Java Modeling Language

• A behavioral interface specification language that can be used
to specify the behavior of Java modules. 

public class Rectangle implements Shape {

 private int width;
 private int height;

 /*@
 @ requires w > 0;
 @ ensures height = \old(height) && width = w;
 @*/
 public void setWidth(double w) {
 this.width = w;
 }
}

 30

In JML, specifications are written as Java annotation comments to the Java program, which hence can
be compiled with any Java compiler.

To process JML specifications several tools exist:
• an assertion-checking compiler (jmlc) which performs runtime verification of assertions,
• a unit testing tool (jmlunit),
• an enhanced version of javadoc (jmldoc) that understands JML specifications and
• an extended static checker ([ESC/Java](http://en.wikipedia.org/wiki/ESC/Java)) a static verification tool

that uses JML as its front-end.

Contracts in
Documentation

 31

One should document any
restrictions on how a method may
be overridden in subclasses.

The Contract of Object.equals(...)
public boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.
The equals method implements an equivalence relation on non-null object references:
• It is reflexive: for any non-null reference value x, x.equals(x) should return true.
• It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and

only if y.equals(x) returns true.
• It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.
• It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)

consistently return true or consistently return false, provided no information used in equals
comparisons on the objects is modified.

• For any non-null reference value x, x.equals(null) should return false.
The equals method for class Object implements the most discriminating possible equivalence relation
on objects...

 32

The documentation consists almost entirely of restrictions on how it may be
overridden.

The method equals in Object implements identity-based equality to mean: Each instance of a class is
equal only to itself. Java classes may override it to implement logical equality. This method is a real “hot
spot” and it is overridden frequently. Violations of the restrictions may have dire consequences and it can
be very difficult to pin down the source of the failure. Many classes, including nearly all collection classes,
depend on the objects passed to them obeying the equals contract.

Object.equals(Object o)

/**
 * Case-insensitive string. Case of the original string is preserved
 * by toString, but ignored in comparisons.
 */
public final class CaseInsensitiveString {
 private String s;
 public CaseInsensitiveString(String s) {
 if (s == null) throw new NullPointerException();
 this.s = s;
 }
 public boolean equals(Object o) {
 if (o instanceof CaseInsensitiveString)
 return s.equalsIgnoreCase(((CaseInsensitiveString) o).s);
 if (o instanceof String)
 return s.equalsIgnoreCase((String) o);
 return false;
 }
 // Remainder omitted
}

 33

Example Implementation

This implementation violates the defined contract. The requirement that the implementation has to be
symmetric is violated:

s1 = new CaseInsensitiveString("Hello");
s2 = "hello";
s1.equals(s2) == true;
s2.equals(s1) == false;

Example Usage of
CaseInsensitiveString
Object cis = new CaseInsensitiveString("Polish");
List list = new ArrayList();
list.add(cis);

return list.contains("polish"); // true or false ?

 34

Nobody knows what list.contains(s) would return. The result may vary from one Java
implementation to another. The result changes when we check the equality of the parameter against the
element or vice versa!

Once you have violated `equals`'s
contract, you simply don’t know
how other objects will behave

when confronted with your object.

 35

 36

The Contract of Object.equals(...)

The Implementation of
java.net.URL.equals
public boolean equals(Object obj)
• Compares this URL for equality with another object.
• If the given object is not a URL then this method immediately returns false.
• Two URL objects are equal if they have the same protocol, reference

equivalent hosts, have the same port number on the host, and the same file and
fragment of the file.

• Two hosts are considered equivalent if both host names can be resolved into
the same IP addresses; else if either host name can't be resolved, the host
names must be equal without regard to case; or both host names equal to null.

• Since hosts comparison requires name resolution, this operation is a blocking
operation.

 37

Assessment
• java.net.URL’s equals method violates the consistent part of equals contract.
• The implementation of that method relies on the IP addresses of the hosts in URLs being compared.  

Translating a host name to an IP address can require network access, and it isn’t guaranteed to yield
the same results over time.

• This can cause the URL equals method to violate the equals contract, and it has caused problems in
practice.

• (Unfortunately, this behavior cannot be changed due to compatibility requirements.)

Later on the problems with the implementation were documented:
Note: The defined behavior for equals is known to be inconsistent with virtual hosting in HTTP.

Enforcing Documented Contracts

• Maybe hard when done manually …

• May require very powerful tooling (theorem proving) …

• Is un-decidable in general.

 38

The Imperative of Documenting Contracts

package java.lang;

class Object {
 public boolean equals(Object ob) {  

return this == ob;
}

}

 39

It is necessary to carefully and precisely document
methods that may be overridden because one
cannot deduce the intended specification from the
code.

Recall the contract of equals. This contract cannot be guessed by studying the implementation of
Object.equals!

The Imperative of Documenting Contracts

/**
 * Subclasses should override...
 * Subclasses may call super...
 * New implementation should call addPage...
 */
 public void addPages() {...}

 40

RFC (Request for Comments) 2119 defines
keywords - may, should, must, etc. – which can be
used to express so-called „subclassing directives“.

Contracts can also be regarded as a way of recording details of method responsibilities.

Writing contracts...
• … helps to avoid constantly checking arguments. 

(E.g. consider the complexity of checking that a given array is sorted (precondition) vs. finding a value in
a sorted array (functionality of a method)).

• … helps to determine who is responsible: 
/*@ requires x >= 0.0;  
 @ ensures JMLDouble.approximatelyEqualTo(x,  
 @ \result * \result, eps); ‘  
 @*/  
public static double sqrt(doublex) {…}

Here, the client has the obligation to pass a non-negative number and can expect to get an
approximation of the square root. The implementor has the obligation to compute and return square
roots. It can assume that the argument is non-negative.

On the Quality of the
Documentation

 41

When documenting methods that
may be overridden, one must be
careful to document the method in a
way that will make sense for all
potential overrides of the function.

Investigations we have done with documentations of stable, intensively used frameworks in the context of
the CodeRecommenders project show that often there is a discrepancy between documentation and the
actual overriding. Two possible reasons:
• outdated documentation,
• framework designer cannot foresee all possible extension/usage scenarios.

Generating API Documentation with JAutoDoc

 /**
 * The number of questions.
 */
 private int numberOfQuestions;

 /**
 * Sets the number of questions.
 *
 * @param numberOfQuestions the number of questions
 * @throws IllegalArgumentException the illegal argument exception
 */
 public void setNumberOfQuestions(int numberOfQuestions)
 throws IllegalArgumentException {
 if (numberOfQuestions < 0 || numberOfQuestions > 65535) {
 throw new IllegalArgumentException();
 }
 this.numberOfQuestions = numberOfQuestions;
 }

 42

The complete documentation was auto-generated.

What People Say About JAutoDoc

• User: Anonymous (2009-08-02 11:32:37)  
Rating: 9	  
Wow exactly what I needed!

• User: Anonymous (2009-02-13 19:58:32)  
Rating: 9	  
Thank you... this plugin rocks!

• User: Anonymous (2009-02-13 19:58:32)  
Rating: 9  
Works perfectly. Smarter than I expected!

Subtypes must be
behaviorally substitutable

for their base types.

 43

Takeaway

• Behavioral subtyping extends “standard” OO subtyping.  
Additionally ensures that assumptions of clients about the
behavior of a base class are not broken by subclasses.

• Behavioral subtyping helps with supporting OCP. 
Only behavioral subclassing (subtyping) truly supports
open-closed designs.

• Design-by-Contract is a technique for supporting LSP. 
Makes the contract of a class to be assumed by the clients
and respected by subclasses explicit (and checkable).

 44

Takeaway

