
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

Liskov Substitution Principle

Summer Term 2018

–Barbara Liskov, 1988 (ACM Turing Award Receiver)

Liskov Substitution Principle

Subtypes must be behaviorally substitutable for their base types.

 2

We identified class inheritance and subtype
polymorphism as primary mechanisms for

supporting the open-closed principle (OCP)
in object-oriented designs.

 3

The Liskov Substitution Principle
• … gives us a way to characterize good inheritance

hierarchies.

• … increases our awareness about traps that will cause us
to create hierarchies that do not conform to the open-
closed principle.

 4

The Essence of the Liskov Substitution Principle

+someMethod() : void

SomeClass

+someMethod() : void

SomeSubclass1

+someMethod() : void

SomeSubclass2

Substitutability  
in object-oriented programs

void clientMethod(SomeClass sc)
{
 …
 sc.someMethod();
 …
}

Liskov Substitution Principle by
Example
• Assume, we have implemented a class Rectangle in our

system.  

class Rectangle {

 public void setWidth(int width) { this.width = width; }

 public void setHeight(int height) { this.height = height;}

 public void area() { return height * width;}

}

• Let's now assume that we want to implement a class Square
and want to maximize reuse.

 6

Liskov Substitution Principle by Example
• Implementing Square as a subclass of Rectangle

class Square extends Rectangle {

 public void setWidth(int width) {
 super.setWidth(width);
 super.setHeight(width);
 }

 public void setHeight(int height) {
 super.setWidth(height);
 super.setHeight(height);
 }

}

• We can pass Square wherever Rectangle is expected.

 7

What do you think of this design?

+setWidth(int width)
+setHeight(int height)
+area():int

Rectangle

+setWidth(int width)
+setHeight(int height)

Square

This
 m

od
el

is s
elf

-co
ns

iste
nt!

+setWidth(int width)
+setHeight(int height)
+area():int

Rectangle

+setWidth(int width)
+setHeight(int height)

Square

Liskov Substitution Principle
by Example

• A client that works with
instances of Rectangle, but
breaks when instances of
Square are passed to it  

void clientMethod(Rectangle rec)
{
 rec.setWidth(5);
 rec.setHeight(4);
 assert(rec.area() == 20);
}

☔

Software  
It Is All About Behavior

 9

Programmers do not define entities
that are something, but entities that
behave somehow.

Validity is not Intrinsic!

 10

Inspecting the Square/Rectangle
hierarchy in isolation did not show
any problems. In fact it even seemed
like a self-consistent design.
We had to inspect the clients to
identify problems.

Liskov Substitution Principle by Example

 11

Rectangles and Square - LSP Compliant Solution

+setWidth(int width)
+setHeight(int height)
+area(): int

Rectangle

+setSize(int size)
+area(): int

Square

+area():int

«interface»
Shape

So what does the Liskov
Substitution Principle add to the

common object-oriented
subtyping rules?

 12

The Liskov Substitution Principle additionally
requires behavioral substitutability

+someMethod() : void

SomeClass

+someMethod() : void

SomeSubclass1

+someMethod() : void

SomeSubclass2

Behavioral Substitutability
• It’s not enough that instances

of SomeSubclass1 and
SomeSubclass2 provide all
methods declared in
SomeClass.  
These methods should also
behave like their heirs!

• A client method should not be
able to distinguish the
behavior of objects of
SomeSubclass1 and
SomeSubclass2 from that of
objects of SomeClass.

Behavioral Subtyping

 14

S is a behavioral subtype of T, if
objects of type T in a program P
may be replaced by objects of type
S without altering any of the
properties of P.

The Relation between  
LSP and OCP
• Consider a function f parameterized over type T

• S is a derivate of T.

• when passed to f in the guise of objects of type T,
objects of type S cause f to misbehave.

• S violates the Liskov Substitution Principle.

 15
f is fragile in the presence of S

Can you think of straightforward
examples of violations of the

Liskov Substitution Principle?

 16

Properties extends Hashtable
LSP Violation in the JDK

 17

Because Properties inherits from Hashtable, the
put and putAll methods can be applied to a
Properties object. Their use is strongly discouraged
as they allow the caller to insert entries whose keys or
values are not Strings. The setProperty method
should be used instead. If the store or save method is
called on a "compromised" Properties object that
contains a non-String key or value, the call will fail.

What mechanisms can
we use to support LSP?

 18

Recall:
A model viewed in isolation cannot be
meaningfully validated with respect to
LSP.
Validity must be judged from the
perspective of possible usages of the
model.

Design by Contract

• Solution to the validation problem: A technique for
explicitly stating what may be assumed.

• Two main aspects of design-by-contract:

• We can specify contracts using Pre-, Post-Conditions
and Invariants.  
They must be respected by subclasses and clients can
rely on them.

• Contract enforcement (behavioral subtyping).  
Tools to check the implementation of subclasses
against contracts of superclasses.

 19

Contract for Rectangle.setWidth(int)

public class Rectangle implements Shape {
 private int width;
 private int height;

 public void setWidth(int w) {
 this.width = w;
 }
}

 20

Design by Contract

Contract Enforcement

• This is called behavioral subtyping.

• It ensures that clients won’t break when instances of
subclasses are used in the guise of instances of their
heirs!

 21

Subclasses must conform to the contract of their
base class!

What would the subtyping rules look like?
What does it mean for a subclass to conform to the contract of the base class?

Behavioral Subtyping

• Rule for Preconditions:

• Preconditions of a class imply preconditions of its
subclasses.

• Preconditions may be replaced by (equal or) weaker ones.

• Rule for Postconditions:

• Postconditions of a class are implied by those of its
subclasses.

• Postconditions may be replaced by equal or stronger
ones.

 22

"Standard" Subtyping

• f: T1 → T2  
// f is function taking values of type T1 and returning values of type T2

• f’: T1’ → T2’

• f’ <: f ⇔ T1 <: T1’ and T2’ <: T2 (f' is a subtype of f)

 23

“Standard” subtyping relies on contra-variance of the argument types and
covariance of the return type for enforcing “pre- and post-conditions on
signatures”.

Scala's Type Hierarchy

 24

scala.Any

scala.AnyRef
scala.AnyVal

scala.ScalaObject"Java classes"

scala.Unit scala.Int

scala.Long

scala....

"ValueClasses"

Scala's Type Hierarchy

 25

scala.Any

scala.AnyRef
scala.AnyVal

scala.ScalaObject"Java classes"

scala.Unit scala.Int

scala.Long

scala....

"ValueClasses"

scala.Null

scala.Nothing

… …

… …

"Standard" Subtyping in Scala
val f: (Seq[_]) ⇒ Boolean = (s) ⇒ { s eq null }

val af1: (Object) ⇒ Boolean // = f ?

val af2: (List[_]) ⇒ Boolean // = f ?

val af3: (Seq[_]) ⇒ Any // = f ?

val af4: (Seq[_]) ⇒ Nothing // = f ?

 26

Is it possible to assign a value of type f to the variable: af1, af2, af3 or af4?

trait Store[+A] {
def +[B >: A](b: B): Store[B]
def contains(a: Any): Boolean

}
object EmptyStore extends Store[Nothing] {

def +[B](b: B): Store[B] = new LinkedListStore(b, this)
def contains(b: Any) = false

}
class LinkedListStore[+A]( 

val v: A, val rest: Store[A]
) extends Store[A] {

def +[B >: A](b: B): LinkedListStore[B] =  
new LinkedListStore(b, this)

def contains(a: Any): Boolean =  
this.v == a || (rest contains a)

}
object Main extends App {

val a: Store[Int] = EmptyStore + 1 + 2
val b: Store[Any] = a
println(b contains 1); println(b contains 3)

}
 27

Using Least Types

Behavioral and Standard Subtyping in OO

• LSP imposes some standard requirements on signatures that have
been adopted in OO languages:

• contra-variance/covariance of method argument/return types.

• no new (checked) exceptions should be thrown by methods of the
subtype, except for those exceptions that are subtypes of
exceptions thrown by the methods of the super-type.

• In addition, there are a number of conditions that behavioral subtypes
must meet concerning values (rather than types) of input and output.

• Behavioral subtyping is undecidable in general.
 28

Behavioral subtyping is a stronger notion than
subtyping of functions defined in type theory.

Languages and Tools for Design-by-
Contract
• Contracts as comments in code or in documentation.

• Unit-tests as contracts.

• Formalisms and tools for specifying contracts in a
declarative way and enforcing them.

 29

Java Modeling Language

• A behavioral interface specification language that can be used
to specify the behavior of Java modules. 

public class Rectangle implements Shape {

 private int width;
 private int height;

 /*@
 @ requires w > 0;
 @ ensures height = \old(height) && width = w;
 @*/
 public void setWidth(double w) {
 this.width = w;
 }
}

 30

Contracts in
Documentation

 31

One should document any
restrictions on how a method may
be overridden in subclasses.

The Contract of Object.equals(...)
public boolean equals(Object obj)
Indicates whether some other object is "equal to" this one.
The equals method implements an equivalence relation on non-null object references:
• It is reflexive: for any non-null reference value x, x.equals(x) should return true.
• It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and

only if y.equals(x) returns true.
• It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and

y.equals(z) returns true, then x.equals(z) should return true.
• It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)

consistently return true or consistently return false, provided no information used in equals
comparisons on the objects is modified.

• For any non-null reference value x, x.equals(null) should return false.
The equals method for class Object implements the most discriminating possible equivalence relation
on objects...

 32

The documentation consists almost entirely of restrictions on how it may be
overridden.

Object.equals(Object o)

/**
 * Case-insensitive string. Case of the original string is preserved
 * by toString, but ignored in comparisons.
 */
public final class CaseInsensitiveString {
 private String s;
 public CaseInsensitiveString(String s) {
 if (s == null) throw new NullPointerException();
 this.s = s;
 }
 public boolean equals(Object o) {
 if (o instanceof CaseInsensitiveString)
 return s.equalsIgnoreCase(((CaseInsensitiveString) o).s);
 if (o instanceof String)
 return s.equalsIgnoreCase((String) o);
 return false;
 }
 // Remainder omitted
}

 33

Example Implementation

Example Usage of
CaseInsensitiveString
Object cis = new CaseInsensitiveString("Polish");
List list = new ArrayList();
list.add(cis);

return list.contains("polish"); // true or false ?

 34

Once you have violated `equals`'s
contract, you simply don’t know
how other objects will behave

when confronted with your object.

 35

 36

The Contract of Object.equals(...)

The Implementation of
java.net.URL.equals
public boolean equals(Object obj)
• Compares this URL for equality with another object.
• If the given object is not a URL then this method immediately returns false.
• Two URL objects are equal if they have the same protocol, reference

equivalent hosts, have the same port number on the host, and the same file and
fragment of the file.

• Two hosts are considered equivalent if both host names can be resolved into
the same IP addresses; else if either host name can't be resolved, the host
names must be equal without regard to case; or both host names equal to null.

• Since hosts comparison requires name resolution, this operation is a blocking
operation.

 37

Enforcing Documented Contracts

• Maybe hard when done manually …

• May require very powerful tooling (theorem proving) …

• Is un-decidable in general.

 38

The Imperative of Documenting Contracts

package java.lang;

class Object {
 public boolean equals(Object ob) {  

return this == ob;
}

}

 39

It is necessary to carefully and precisely document
methods that may be overridden because one
cannot deduce the intended specification from the
code.

The Imperative of Documenting Contracts

/**
 * Subclasses should override...
 * Subclasses may call super...
 * New implementation should call addPage...
 */
 public void addPages() {...}

 40

RFC (Request for Comments) 2119 defines
keywords - may, should, must, etc. – which can be
used to express so-called „subclassing directives“.

On the Quality of the
Documentation

 41

When documenting methods that
may be overridden, one must be
careful to document the method in a
way that will make sense for all
potential overrides of the function.

Generating API Documentation with JAutoDoc

 /**
 * The number of questions.
 */
 private int numberOfQuestions;

 /**
 * Sets the number of questions.
 *
 * @param numberOfQuestions the number of questions
 * @throws IllegalArgumentException the illegal argument exception
 */
 public void setNumberOfQuestions(int numberOfQuestions)
 throws IllegalArgumentException {
 if (numberOfQuestions < 0 || numberOfQuestions > 65535) {
 throw new IllegalArgumentException();
 }
 this.numberOfQuestions = numberOfQuestions;
 }

 42

The complete documentation was auto-generated.

Subtypes must be
behaviorally substitutable

for their base types.

 43

Takeaway

• Behavioral subtyping extends “standard” OO subtyping.  
Additionally ensures that assumptions of clients about the
behavior of a base class are not broken by subclasses.

• Behavioral subtyping helps with supporting OCP. 
Only behavioral subclassing (subtyping) truly supports
open-closed designs.

• Design-by-Contract is a technique for supporting LSP. 
Makes the contract of a class to be assumed by the clients
and respected by subclasses explicit (and checkable).

 44

Takeaway

