
Software Engineering 
Design & Construction

Dr. Michael Eichberg 
Fachgebiet Softwaretechnik 

Technische Universität Darmstadt

A Critical View on Inheritance

Summer Term 2018

1 A smart home has many features that are controlled automatically: 
Heating, Lighting, Shutters,  … 

We want to develop a software that helps us to control our smart home.

A Critical View On 
Inheritance

 2

Inheritance is the main built-in 
variability mechanism of OO 
languages.

2 Common functionality can be implemented by a base class and each variation can be implemented by a 
separate subclass.  
• In the following, we analyze the strengths and deficiencies of inheritance with respect to supporting 

variability.  
• Many design patterns that we will discuss in the following sections propose solutions to compensate 

for deficiencies of inheritance.

This section serves as a bridge between the block on design 
principles and the blocks about design patterns and advanced 
languages.  



Desired Properties 
(of Programming Languages)

• Built-in support for OCP 

• Good Modularity 

• Support for structural variations 

• Variations can be represented in type declarations

 3

3 A good support for OCP, reduces the need to anticipate variations. Inheritance allows replacing the 
implementation of arbitrary methods of a base class (unless it is explicitly forbidden, e.g., in Java methods 
can be declared as final). 

Of course, support for variability in a class is conditioned by the granularity of its methods and the 
abstractions built-in. 

When we achieve good modularity, the base class can remain free of any variation-specific 
functionality; each variation is implemented in a separate subclass.  

In general, inheritance allows to design the most suitable interface for each variation.
Different variations of a type may need to extend the base interface with variation-specific fields and 
methods. (In addition to varying the implementation of the inherited base interface.) 

The property that variations can be represented in type declarations is necessary for type-safe access of 
variation-specific interfaces.  

Variation of selection functionality of table widgets.

class TableBase extends Widget { 
  TableModel model; 
  String getCellText(int row, int col){ return model.getCellText(row, col); }
  void paintCell(int r, int c){ getCellText(row, col) … } 
}
abstract class TableSel extends TableBase { 
  abstract boolean isSelected(int row, int col); 
  void paintCell(int row, int col) { if (isSelected(row, col)) … }
}
class TableSingleCellSel extends TableSel { 
  int currRow; int currCol; 
  void selectCell(int r, int c){ currRow = r; currCol = c; } 
  boolean isSelected(int r, int c){ return r == currRow && c == currCol; }  
} 
class TableSingleRowSel extends TableSel { 
  int currRow; 
  void selectRow(int row) { currRow = row; } 
  boolean isSelected(int r, int c) { return r == currRow; } 
}  
class TableRowRangeSel extends TableSel { … } 
class TableCellRangeSel extends TableSel { … } 

 4

Desired Properties By Example

4 The modularization of these variations by inheritance is illustrated by the given (pseudo-)code:  
• TableBase implements basic functionality of tables as a variation of common functionality for all 

widgets, e.g., display of tabular data models.  
• The abstract class TableSel extends TableBase with functionality that is common for all types of table 

selection, e.g., rendering of selected cells.  
• TableSingleCellSel, TableSingleRowSel, TableRowRangeSel, and TableCellRangeSel implement specific 

types of table selections.  

 
Assessment 
• Built-in support for OCP: The implementation of paintCell in TableSel can be overridden and we could 

create further selection models. 
• Good modularity: Each table selection model is encapsulated in a separate class. 
• Support for structural variations: 

• Different operations and variables are declared and implemented by TableSingleCellSel and 
TableSingleRowSel: currRow, currCel, selectCell and currRow, selectRow, respectively. 

• Can design the most suitable interface for each type of table selection.  
• Do not need to design a base interface that fits all future variations. 



Non-Reusable, Hard-to-Compose Extensions

 5

An Extract from Java’s Stream Hierarchy

InputStream

File 
InputStream

Piped 
InputStream

ByteArray 
InputStream

5 Consider an extract from java.io package that consists of classes for reading from a source. Streams 
abstract from concrete data sources and sinks: 
• InputStream is root of stream classes reading from a data source. 
• FileInputStream implements streams that read from a file. 
• PipedInputStream implements streams that read from a PipedOutputStream.  Typically, a thread 

reads from a PipedInputStream data written to the corresponding PipedOutputStream by another 
thread. 

• ByteArrayInputStream implements streams that read from memory.

Non-Reusable, Hard-to-Compose Extensions

 6

Handling Streams

InputStream

File 
InputStream

Piped 
InputStream

ByteArray 
InputStream

ByteArrayData 
InputStream

6 Need a variation of ByteArrayInputStream capable of reading whole sentences and not just single 
bytes. 
We could implement it as a subclass of ByteArrayInputStream. The blue part in the name of the 
class denotes the delta (DataInputStream) needed to implement this variation. 

Further Variations that are conceivable: 
• Reading whole sentences with other kinds of streams: 

• FileInputStream objects that are able to read whole sentences. 
• PipedInputStream should read whole sentences too. 
• … 

• Writing the given data back (“red” in the following slide) 
• Buffering content (“green” in the following slide), 
• Counting the numbers of lines processed, 
• …	



Non-Reusable, Hard-to-Compose Extensions

 7

Handling Streams

InputStream

File 
InputStream

Piped 
InputStream

ByteArray 
InputStream

PipedData 
InputStream

PipedBuffered 
InputStream

PipedPushback 
InputStream

ByteArrayData 
InputStream

ByteArrayBuffered 
InputStream

ByteArrayPushback 
InputStream

...

...

...

Each kind of variation would have to be re-implemented for all kinds of streams, for all 
meaningful combinations of variations

7 Assessment 
The design is complex and suffers from a huge amount of code duplication.

Non-Reusable,  
Hard-to-Compose 

Extensions

 8

Extensions defined in subclasses of 
a base class cannot be reused with 
other base classes.

E.g., the Pushback related functionality in 
FilePushbackInputStream cannot be reused.

8 Result 
• Code duplication: 

A particular type of variation needs to be re-implemented for all siblings of a base type which results in 
code duplication. 
Large number of independent extensions are possible: 

• For every new functionality we want. 
• For every combination of every functionality we want. 

• Maintenance nightmare: exponential growth of number of classes. 



Weak Support for 
Dynamic Variability

 9

Variations supported by an object 
are fixed at object creation time and 
cannot be (re-)configured 
dynamically.

A buffered stream is a buffered stream is a buffered stream… It is not 
easily possible to turn buffering on/off, if buffering is implemented by 
means of subclassing.

9

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to classes to be 
instantiated can be implemented by conditional 
statements. 

• Issue: 
Such a mapping is error-prone and not extensible.   
When new variants of the class are introduced, the 
mapping from configuration variables to classes to 
instantiate must be changed.

 10

The configuration of an object’s implementation 
may depend on values from the runtime context. 

…if(x) new Y() else new Z() …

Rigid Design

10 Example 
Table widget options may come from some dynamic configuration panel; depending on the configuration 
options, different compositions of table widget features need to be instantiated.



Dynamic Variability Illustrated

• Potential Solution: 
Using dependency injection. 

• Issue: 
Comprehensibility suffers: 

• Objects are (implicitly) created by the Framework 
• Dependencies are not directly visible/are rather implicit

 11

The configuration of an object’s implementation 
may depend on values from the runtime context. 

11 Example 
Dependency injection is commonly used by Enterprise Application Frameworks such as Spring, EJB,… or 
by frameworks such as Google Guice.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to object behavior can be 
implemented by conditional statements in the 
implementation of object’s methods. 

• Issue: 
Such a mapping is error-prone and not extensible.   
When new variants of the behavior are introduced, the 
mapping from dynamic variables to implementations 
must be changed.

 12

The behavior of an object may vary depending on 
its state or context of use. 

12 Example 
An account object’s behavior may vary depending on the amount of money available. The behavior of a 
service then may need to vary depending on the client’s capabilities.



The  
Fragile Base Class 

Problem

 13

Cf. Item 17 of Joshua Bloch's, Effective Java.

13

An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
  private int addCount = 0;    
  public InstrumentedHashSet() {    } 
  public InstrumentedHashSet(int initCap, float loadFactor) {
    super(initCap, loadFactor);
  }    

  @Override public boolean add(E e) { addCount++; return super.add(e); }
  @Override public boolean addAll(Collection<? extends E> c) {
    addCount += c.size();
    return super.addAll(c);
  }
  public int getAddCount() { return addCount; }

  public static void main(String[] args) {
    InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
    s.addAll(Arrays.asList("aaa", "bbb", "ccc"));
    System.out.println(s.getAddCount());
  }
}

 14

The Fragile Base Class Problem Illustrated

Output?

14 Suppose we want to implement HashSets that know the number of added elements; we implement a 
class InstrumentedHashSet that inherits from HashSet and overrides methods that change the state 
of a HashSet …  

The answer to the question is 6 because the implementation of addAll in HashSet internally calls 
this.add(...).  Hence, added elements are counted twice.



An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
  private int addCount = 0;    
  public InstrumentedHashSet() {    } 
  public InstrumentedHashSet(int initCap, float loadFactor) {
    super(initCap, loadFactor);
  }    

  @Override public boolean add(E e) { addCount++; return super.add(e); } 
  // @Override public boolean addAll(Collection<? extends E> c) {
  //  addCount += c.size();
  //  return super.addAll(c);
  // }
  public int getAddCount() { return addCount; }

  public static void main(String[] args) {
    InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
    s.addAll(Arrays.asList(“aaa", “bbb", “ccc"));
    System.out.println(s.getAddCount());
  }
}

 15

The Fragile Base Class Problem Illustrated

Does this really(!) 
solve the problem?

15 Ask yourself: Is the counting problem solved, by not overriding `addAll`? For the moment, yes. 
But, not principally.  

What if in the future the designers of HashSet decide to re-implement addAll to insert the elements of 
the parameter collection as a block rather than by calling add on each element of the collection? Might be 
necessary for efficiency reasons.

The Fragile Base Class 
Problem in a Nutshell

 16

Changes in base classes may lead 
to unforeseen problems in 
subclasses. 

Inheritance Breaks Encapsulation

16 You can modify a base class in a seemingly safe way. But this modification, when inherited by the 
derived classes, might cause them to malfunction. 

You can't tell whether a base class change is safe simply by examining the base class' methods in 
isolation. You must look at (and test) all derived classes as well. 
You must check all code that uses the base class and its derived classes; this code might also be broken 
by the changed behavior. 

A simple change to a key base class can render an entire program inoperable.



Fragility by dependencies on the self-call structure

• The fragility considered so far is caused by dependencies 
on the self-call structure of the base class. 

• Subclasses make assumptions about the calling relationship 
between non-private methods of the base class.  

• These assumptions are implicitly encoded in the overriding 
decisions of the subclass. 

• If these assumptions are wrong or violated by future 
changes of the structure of superclass’ self-calls, the 
subclass’s behavior is broken.

 17

The Fragile Base Class Problem in a Nutshell

I 17 Is it possible to solve the fragile-base class problem by avoiding assumptions about the self-
call structure of the base class in the implementations of the subclasses?

Fragility by addition of new methods

• Fragility by extending a base class with new methods that were not 
there when the class was subclassed.  

• Example 

• Consider a base collection class. 

• To ensure some (e.g., security) property, we want to enforce that 
all elements added to the collection satisfy a certain predicate. 

• We override every method that is relevant for ensuring the security 
property to consistently check the predicate. 

• Yet, the security may be defeated unintentionally if a new method 
is added to the base class which is relevant for the (e.g., security) 
property.

 18

The Fragile Base Class Problem in a Nutshell

I/IIIII 18 Several holes of this nature had to be fixed when java.util.Hashtable and java.util.Vector 
were retrofitted to participate in the Java Collection Frameworks.



Fragility by addition of new methods

• Fragility by extending a base class with a method that was also 
added to a subclass.  
I.e., we accidentally capture a new method; the new release of the 
base class accidentally includes a method with the same name and 
parameter types. 

• If the return types differ, your code will not compile anymore because 
of conflicting method signatures. 

• If the signatures are compatible, your methods may get involved in 
things you never thought about.

 19

The Fragile Base Class Problem in a Nutshell

II/IIIII 19

Fragility by addition of new methods

• Fragility by adding an overloaded method to the base class; the new 
release of the base class accidentally includes a method which 
makes it impossible for the compiler (in 3rd party code) to determine 
the call target of your call.

 20

The Fragile Base Class Problem in a Nutshell

III/III

class X { void m(String){…} ; void m(Object o){…}/*added*/ } 

<X>.m(null)  // the call target is not unique (anymore)

II 20 Though this issues is generally trivial to fix - we just have to type “null”; eg., foo((X) null) - to 
ensure that the right method is called, the client still needs to updated. Note, that this problem does not 
exist, if we follow the general best practice of not using null and using Option[T]/Optional<T> 
instead.



Taming Inheritance

 21

Implementation inheritance 
(extends) is a powerful way to 
achieve code reuse. 

But, if used inappropriately, it leads 
to fragile software.

21 In the following, we discuss rules of thumb for making "good use" of inheritance.

Dos and Don'ts

• It is always safe to use inheritance within a package.   
The subclass and the superclass implementation are under 
the control of the same programmers. 

• It is also OK to extend classes specifically designed and 
documented for extension. 

• Avoid inheriting from concrete classes not designed and 
documented for inheritance across package boundaries.

 22

Taming Inheritance

Closed Packages Assumption

22



-Joshua Bloch, Effective Java

Design and document for inheritance or else prohibit it.

 23

23

Classes Must Document Self-Use

• Each public/protected method/constructor must indicate 
self-use: 
• Which overridable methods it invokes. 
• In what sequence. 

• How the results of each invocation affect subsequent 
processing. 

• A class must document any circumstances under which it 
might invoke an overridable method.   
(Invocations might come from background threads or initializers; indirect invocations can also come from static 
initializers.)

 24

Taming Inheritance

Packages are considered closed!

24



Common Conventions for Documenting Self-Use

• The description of self-invocations to overridable 
methods is given at the end of a method’s documentation 
comment. 

• The description starts with “This implementation …”.    
Indicates that the description tells something about the 
internal working of the method. 

 25

Taming Inheritance

25 Overridable method = non-final and either public or protected

Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractCollection  

public boolean remove(Object o)
 
Removes a single instance of the specified element from this 
collection.  
…  
This implementation removes the element from the collection 
using the iterator's remove method.
Note that this implementation throws an 
UnsupportedOperationException if the iterator returned by 
this collection's iterator() method does not implement the 
remove(…) method.

 26

26 The documentation makes explicit that overriding iterator() will affect the behavior of remove and what the 
effect would be.



Documenting Self-Use 
In API Documentation

 27

Do implementation details have a 
rightful place in a good API 
documentation?

Black-Box Use

White-Box Use

27 The answer is simple: It depends! 
• Keep in mind: There are two kinds of clients of an extensible class: 

• Ordinary clients create instances of the class and call methods in its interface (black-box use). 
• Clients that extend the class via inheritance (white-box use). 

• Ordinary clients should not know such details.  
… At least as long as a mechanism for LSP is in place. 

• Subclassing clients need them. That’s their “interface". 

Current documentation techniques and tools lack proper means of separating the two kinds of API 
documentations.

Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractList  

protected void removeRange(int fromIndex, int toIndex)
 
Removes from a list …

This method is called by the clear operation on this list and 
its sub lists. Overriding this method to take advantage of the 
internals of the list implementation can substantially improve 
the performance of the clear operation on this list and its sub 
lists…  

This implementation gets a list iterator positioned before 
fromIndex and repeatedly calls ListIterator.next and 
ListIterator.remove. Note: If ListIterator.remove requires 
linear time, this implementation requires quadratic time.

 28

28 A class must document the supported hooks to its internals. These internals are irrelevant for ordinary 
users of the class. But, they are crucial for enabling subclasses to specialize the functionality in an 
effective way.



Carefully Design and Test Hooks 
To Internals
• Provide as few protected methods and fields as possible. 

• Each of them represents a commitment to an 
implementation detail. 

• Designing a class for inheritance places limitations on the 
class. 

• Do not provide too few hooks.   

• A missing protected method can render a class 
practically unusable for inheritance.

 29

29 How to decide about the protected members to expose? 

W.r.t. designing the internal hooks and making decisions about the kind and number of internal hooks, no 
silver bullet exists. You have to think hard, take your best guess, and test. 

Test your class for extensibility before releasing them. By writing test subclasses (At least one subclass 
should be written by someone other than the superclass author).

Constructors Must Not 
Invoke Overridable 

Methods

 30

Standing Rule 
30



Constructors Must Not Invoke 
Overridable Methods
class JavaSuper {
  public JavaSuper() { printState(); }

  public void printState() { System.out.println("no state"); }
}

class JavaSub extends JavaSuper {
    private int x = 42; // the result of a tough computation

    public void printState() { System.out.println("x = " + x); }
}

class JavaDemo {
    public static void main(String[] args) {
        JavaSuper s = new JavaSub();
        s.printState();
    }
}

 31

Result: 
	 x = 0 
	 x = 42

31 Ask yourself: What is printed on the screen? 

Problem 
An overridable method called by a constructor may get invoked on a non-initialized receiver. 
As a result a failure may occur. 

Reason  
• The superclass constructor runs before the subclass constructor.  
• The overridden method will get invoked before the subclass constructor has been invoked.  
• The overridden method will not behave as expected if it depends on any initialization done by the 

subclass constructor.

Constructors Must Not Invoke 
Overridable Methods
class ScalaSuper {

    printState(); // executed at the end of the initialization

    def printState() : Unit = { println("no state”) }
}

class ScalaSub extends ScalaSuper {
    var y: Int = 42 // What was the question?
    override def printState() : Unit = { println("y = "+y) }
}

object ScalaDemo extends App {
    val s = new ScalaSub
    s.printState() // after initialization
}

 32

Result: 
	 y = 0 
	 y = 42

Non-Idiomatic Scala

32 Ask yourself: What is printed on the screen? 

For further details: [Scala Language Specification](http://www.scala-lang.org/docu/files/
ScalaReference.pdf). 



Constructors Must Not Invoke 
Overridable Methods
class Super {

    // executed at the end of the initialization
    printState();

    def printState() : Unit = { println("no state") }
}

class Sub(var y: Int = 42) extends Super {
    override def printState() : Unit = { println("y = "+y) }
}

object Demo extends App {
    val s = new Sub
    s.printState() // after initialization
}

 33

Result: 
	 y = 42 
	 y = 42

Idiomatic Scala

33 Ask yourself: What is printed on the screen? 
Here, a standard class parameter is used to define the field value. 

Recommended reading: How Scala Experience Improved Our Java Development; http://
spot.colorado.edu/~reids/papers/how-scala-experience-improved-our-java-development-reid-2011.pdf 

Initializers Must Not Invoke 
Overridable Methods
trait Super {
    val s: String
    def printState() : Unit = { println(s) }

    printState();
}

class Sub1 extends Super { val s: String = 110.toString }
class Sub2 extends { val s: String = 110.toString } with Super

new Sub1()
new Sub2()

 34

Result: 
null 
110

34 Ask yourself: What is printed on the screen? 
In case of traits it is possible to use a so-called early field definition clause (extends { … }) to 
define the field value before the super type constructor is called. 

For further details: Scala Language Specification (5.1.6 Early Definitions); http://www.scala-lang.org/docu/
files/ScalaReference.pdf 


