
Software Engineering
Design & Construction

Dr. Michael Eichberg
Fachgebiet Softwaretechnik

Technische Universität Darmstadt

A Critical View on Inheritance

Summer Term 2018

A Critical View On
Inheritance

 2

Inheritance is the main built-in
variability mechanism of OO
languages.

Desired Properties 
(of Programming Languages)

• Built-in support for OCP

• Good Modularity

• Support for structural variations

• Variations can be represented in type declarations

 3

Variation of selection functionality of table widgets.

class TableBase extends Widget {
 TableModel model;
 String getCellText(int row, int col){ return model.getCellText(row, col); }
 void paintCell(int r, int c){ getCellText(row, col) … }
}
abstract class TableSel extends TableBase {
 abstract boolean isSelected(int row, int col);
 void paintCell(int row, int col) { if (isSelected(row, col)) … }
}
class TableSingleCellSel extends TableSel {
 int currRow; int currCol;
 void selectCell(int r, int c){ currRow = r; currCol = c; }
 boolean isSelected(int r, int c){ return r == currRow && c == currCol; }
}
class TableSingleRowSel extends TableSel {
 int currRow;
 void selectRow(int row) { currRow = row; }
 boolean isSelected(int r, int c) { return r == currRow; }
}
class TableRowRangeSel extends TableSel { … }
class TableCellRangeSel extends TableSel { … }

 4

Desired Properties By Example

Non-Reusable, Hard-to-Compose Extensions

 5

An Extract from Java’s Stream Hierarchy

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

Non-Reusable, Hard-to-Compose Extensions

 6

Handling Streams

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

ByteArrayData
InputStream

Non-Reusable, Hard-to-Compose Extensions

 7

Handling Streams

InputStream

File
InputStream

Piped
InputStream

ByteArray
InputStream

PipedData
InputStream

PipedBuffered
InputStream

PipedPushback
InputStream

ByteArrayData
InputStream

ByteArrayBuffered
InputStream

ByteArrayPushback
InputStream

...

...

...

Each kind of variation would have to be re-implemented for all kinds of streams, for all
meaningful combinations of variations

Non-Reusable,  
Hard-to-Compose

Extensions

 8

Extensions defined in subclasses of
a base class cannot be reused with
other base classes.

E.g., the Pushback related functionality in
FilePushbackInputStream cannot be reused.

Weak Support for
Dynamic Variability

 9

Variations supported by an object
are fixed at object creation time and
cannot be (re-)configured
dynamically.

A buffered stream is a buffered stream is a buffered stream… It is not
easily possible to turn buffering on/off, if buffering is implemented by
means of subclassing.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to classes to be
instantiated can be implemented by conditional
statements.

• Issue: 
Such a mapping is error-prone and not extensible.  
When new variants of the class are introduced, the
mapping from configuration variables to classes to
instantiate must be changed.

 10

The configuration of an object’s implementation
may depend on values from the runtime context.

…if(x) new Y() else new Z() …

Rigid Design

Dynamic Variability Illustrated

• Potential Solution: 
Using dependency injection.

• Issue: 
Comprehensibility suffers:

• Objects are (implicitly) created by the Framework

• Dependencies are not directly visible/are rather implicit

 11

The configuration of an object’s implementation
may depend on values from the runtime context.

Dynamic Variability Illustrated

• Potential Solution: 
Mapping from runtime values to object behavior can be
implemented by conditional statements in the
implementation of object’s methods.

• Issue: 
Such a mapping is error-prone and not extensible.  
When new variants of the behavior are introduced, the
mapping from dynamic variables to implementations
must be changed.

 12

The behavior of an object may vary depending on
its state or context of use.

The  
Fragile Base Class 

Problem

 13

Cf. Item 17 of Joshua Bloch's, Effective Java.

An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
 private int addCount = 0;
 public InstrumentedHashSet() { }
 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }

 @Override public boolean add(E e) { addCount++; return super.add(e); }
 @Override public boolean addAll(Collection<? extends E> c) {
 addCount += c.size();
 return super.addAll(c);
 }
 public int getAddCount() { return addCount; }

 public static void main(String[] args) {
 InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
 s.addAll(Arrays.asList("aaa", "bbb", "ccc"));
 System.out.println(s.getAddCount());
 }
}

 14

The Fragile Base Class Problem Illustrated

Output?

An Instrumented HashSet

import java.util.*;
public class InstrumentedHashSet<E> extends HashSet<E> {
 private int addCount = 0;
 public InstrumentedHashSet() { }
 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }

 @Override public boolean add(E e) { addCount++; return super.add(e); }
 // @Override public boolean addAll(Collection<? extends E> c) {
 // addCount += c.size();
 // return super.addAll(c);
 // }
 public int getAddCount() { return addCount; }

 public static void main(String[] args) {
 InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();
 s.addAll(Arrays.asList(“aaa", “bbb", “ccc"));
 System.out.println(s.getAddCount());
 }
}

 15

The Fragile Base Class Problem Illustrated

Does this really(!)
solve the problem?

The Fragile Base Class
Problem in a Nutshell

 16

Changes in base classes may lead
to unforeseen problems in
subclasses.

Inheritance Breaks Encapsulation

Fragility by dependencies on the self-call structure

• The fragility considered so far is caused by dependencies
on the self-call structure of the base class.

• Subclasses make assumptions about the calling relationship
between non-private methods of the base class.

• These assumptions are implicitly encoded in the overriding
decisions of the subclass.

• If these assumptions are wrong or violated by future
changes of the structure of superclass’ self-calls, the
subclass’s behavior is broken.

 17

The Fragile Base Class Problem in a Nutshell

I

Fragility by addition of new methods

• Fragility by extending a base class with new methods that were not
there when the class was subclassed.

• Example

• Consider a base collection class.

• To ensure some (e.g., security) property, we want to enforce that
all elements added to the collection satisfy a certain predicate.

• We override every method that is relevant for ensuring the security
property to consistently check the predicate.

• Yet, the security may be defeated unintentionally if a new method
is added to the base class which is relevant for the (e.g., security)
property.

 18

The Fragile Base Class Problem in a Nutshell

I/IIIII

Fragility by addition of new methods

• Fragility by extending a base class with a method that was also
added to a subclass.  
I.e., we accidentally capture a new method; the new release of the
base class accidentally includes a method with the same name and
parameter types.

• If the return types differ, your code will not compile anymore because
of conflicting method signatures.

• If the signatures are compatible, your methods may get involved in
things you never thought about.

 19

The Fragile Base Class Problem in a Nutshell

II/IIIII

Fragility by addition of new methods

• Fragility by adding an overloaded method to the base class; the new
release of the base class accidentally includes a method which
makes it impossible for the compiler (in 3rd party code) to determine
the call target of your call.

 20

The Fragile Base Class Problem in a Nutshell

III/III

class X { void m(String){…} ; void m(Object o){…}/*added*/ }

<X>.m(null) // the call target is not unique (anymore)

II

Taming Inheritance

 21

Implementation inheritance
(extends) is a powerful way to
achieve code reuse.

But, if used inappropriately, it leads
to fragile software.

Dos and Don'ts

• It is always safe to use inheritance within a package.  
The subclass and the superclass implementation are under
the control of the same programmers.

• It is also OK to extend classes specifically designed and
documented for extension.

• Avoid inheriting from concrete classes not designed and
documented for inheritance across package boundaries.

 22

Taming Inheritance

Closed Packages Assumption

-Joshua Bloch, Effective Java

Design and document for inheritance or else prohibit it.

 23

Classes Must Document Self-Use

• Each public/protected method/constructor must indicate
self-use:

• Which overridable methods it invokes.

• In what sequence.

• How the results of each invocation affect subsequent
processing.

• A class must document any circumstances under which it
might invoke an overridable method.  
(Invocations might come from background threads or initializers; indirect invocations can also come from static
initializers.)

 24

Taming Inheritance

Packages are considered closed!

Common Conventions for Documenting Self-Use

• The description of self-invocations to overridable
methods is given at the end of a method’s documentation
comment.

• The description starts with “This implementation …”.  
Indicates that the description tells something about the
internal working of the method.

 25

Taming Inheritance

Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractCollection  

public boolean remove(Object o)
 
Removes a single instance of the specified element from this
collection.
…
This implementation removes the element from the collection
using the iterator's remove method.
Note that this implementation throws an
UnsupportedOperationException if the iterator returned by
this collection's iterator() method does not implement the
remove(…) method.

 26

Documenting Self-Use
In API Documentation

 27

Do implementation details have a
rightful place in a good API
documentation?

Black-Box Use

White-Box Use

Example of Documentation On Self-
Invocation
• Taken from: java.util.AbstractList  

protected void removeRange(int fromIndex, int toIndex)
 
Removes from a list …

This method is called by the clear operation on this list and
its sub lists. Overriding this method to take advantage of the
internals of the list implementation can substantially improve
the performance of the clear operation on this list and its sub
lists…

This implementation gets a list iterator positioned before
fromIndex and repeatedly calls ListIterator.next and
ListIterator.remove. Note: If ListIterator.remove requires
linear time, this implementation requires quadratic time.

 28

Carefully Design and Test Hooks
To Internals
• Provide as few protected methods and fields as possible.

• Each of them represents a commitment to an
implementation detail.

• Designing a class for inheritance places limitations on the
class.

• Do not provide too few hooks.

• A missing protected method can render a class
practically unusable for inheritance.

 29

Constructors Must Not
Invoke Overridable

Methods

 30

Standing Rule

Constructors Must Not Invoke
Overridable Methods
class JavaSuper {
 public JavaSuper() { printState(); }

 public void printState() { System.out.println("no state"); }
}

class JavaSub extends JavaSuper {
 private int x = 42; // the result of a tough computation

 public void printState() { System.out.println("x = " + x); }
}

class JavaDemo {
 public static void main(String[] args) {
 JavaSuper s = new JavaSub();
 s.printState();
 }
}

 31

Result:
	 x = 0
	 x = 42

Constructors Must Not Invoke
Overridable Methods
class ScalaSuper {

 printState(); // executed at the end of the initialization

 def printState() : Unit = { println("no state”) }
}

class ScalaSub extends ScalaSuper {
 var y: Int = 42 // What was the question?
 override def printState() : Unit = { println("y = "+y) }
}

object ScalaDemo extends App {
 val s = new ScalaSub
 s.printState() // after initialization
}

 32

Result:
	 y = 0
	 y = 42

Non-Idiomatic Scala

Constructors Must Not Invoke
Overridable Methods
class Super {

 // executed at the end of the initialization
 printState();

 def printState() : Unit = { println("no state") }
}

class Sub(var y: Int = 42) extends Super {
 override def printState() : Unit = { println("y = "+y) }
}

object Demo extends App {
 val s = new Sub
 s.printState() // after initialization
}

 33

Result:
	 y = 42
	 y = 42

Idiomatic Scala

Initializers Must Not Invoke
Overridable Methods
trait Super {
 val s: String
 def printState() : Unit = { println(s) }

 printState();
}

class Sub1 extends Super { val s: String = 110.toString }
class Sub2 extends { val s: String = 110.toString } with Super

new Sub1()
new Sub2()

 34

Result:
null
110

